Metaphysics of Modality

Lecture 3
Today’s Lecture

• Abstract Realism
 – There are possible worlds
 – Possible worlds are abstract objects of some sort or other

(1) Possible worlds as sets of sentences

(2) Possible worlds as states of affairs
Abstract Realism – Worlds as Sets of Sentences

Possible Worlds

\[x \text{ is a possible world} \iff x \text{ is a maximal consistent set of sentences.} \]

\[p \text{ is true at a possible world } w \iff p \in w \]
Abstract Realism – Worlds as Sets of Sentences

Possible Worlds

x is a possible world $\iff x$ is a maximal consistent set of sentences.

- Not any arbitrary set of sentences is a possible world:
 - $\{Pa, \neg Pa\}$

- To be a possible world a set of sentences must be consistent.
Abstract Realism – Worlds as Sets of Sentences

Possible Worlds

\(x \) is a possible world \(\iff x \) is a maximal consistent set of sentences.

- Not any arbitrary consistent set of sentences is a possible world:
 - \(\{Pa\} \)

- To be a possible world a set of consistent sentences must be \textit{maximal}.

- \(S \) is maximal iff
 - for every atomic sentence \(p \), \(S \) contains either \(p \) or \(\neg p \).
 - \(S \) contains all the sentences entailed by these atomic sentences.

- Suppose our only two atomic sentences are \(Pa \) and \(Fb \):
 - A maximal set would be e.g. \(\{Pa, \neg Fb, Pa \& \neg Fb, \exists x Px, \ldots \} \)
Abstract Realism – Worlds as Sets of Sentences

1. Problem of Reduction

• Consistency is typically spelled out in modal terms:

• A set of sentences S is consistent iff it is possible that all the sentences in S are true together

• Can we spell out consistency without appealing to modality?

• Perhaps we can characterise consistency syntactically:

• A set of sentences S is consistent iff there is no derivation of a contradiction from the sentences it contains in FOL.

• $\{Pa, \neg Pa\}$ is inconsistent because we can derive Pa and $\neg Pa$
• By spelling out consistency syntactically, we can make sure that every sentence that is logically impossible is false at every world.

• But some sentences should be false at every world without being logically impossible.
 – a is (entirely and always) red & a is (entirely and always) blue
 – Ra & Ba
 – We cannot derive a contradiction from \{Ra, Ba\} in FOL

• Just add the following as a non-logical axiom to FOL:
 \[(A1) \forall x \neg(Rx \& Bx)\]

• A set of sentences S is consistent iff there is no derivation of a contradiction from the sentences it contains in FOL + (A1).
For this strategy to work we will have to add further axioms to ensure that no non-logical impossibility holds at any world.

We can’t simply say:
(M) If p is a necessary truths then p is an axiom

But is there really an alternative?

Our language has to be rich enough to talk about both micro-physical objects (electrons) and macro-physical objects (elephants).

Consider a maximal set that contains
- micro-physical sentences to the effect that there is an elephant at place p at time t.
- macro-physical sentences to the effect that there is no elephant at place p at time t.
1. Problem of Reduction

• To make sure that such a set is inconsistent we would have to add an axiom of the following form:

\[(A2) \text{ [Micro]} \rightarrow \text{ [Macro]}\]

Roughly:
If something fulfils a certain micro-physical description D then it is an elephant

• Now the problem is that we will need very many such bridge laws

• There’s no guarantee that finitely many will do

• Even if finitely many bridge laws suffice, no one will ever be able to state all of them

• So the only theory that has actually been stated and that is reductive remains Lewis’s.
Abstract Realism – Worlds as Sets of Sentences

2. Problem of Expressive Power

• Arguably there are as many spacetime points as there are real numbers

• For each of the points it is possible that only that point is occupied by matter while all other points are vacant

• To represent all these possibilities we need a name for each of the points

• Lagadonian Language:
 – Each individual serves as a name for itself
 – Each property serves as a predicate

• The Lagadonian “sentence” saying that Anna is a footballer:
 <Anna, the property of being a footballer>
Abstract Realism – Worlds as Sets of Sentences

2. Problem of Expressive Power

- What about possibilities involving individuals that don’t actually exist?
- There could have been a person who doesn’t actually exist and who is a footballer.
- Even in a Lagadonian language we don’t have a name for that merely possible individual
- We need to make do with a descriptive sentence: “there is an individual which is distinct from, Tom, Dick, Harry ... and who is a footballer”
- Worlds with non-actual individuals are constructed with the help of descriptions that name only actual individuals and qualitative properties
2. Problem of Expressive Power

• There ought to be a world w_1 according to which there are two non-actual individuals who are just like Batman and Robin are according to the story:

• “there is an individual which is distinct from, Tom, Dick, Harry … and who wears a bat-mask, … and who is accompanied by another guy who wears a yellow cape…”

• Is there another world w_2 which is just like w_1 except that the guy who plays the Batman-role in w_1 plays the Robin-role in w_2 and vice versa?

• If you are a haecceitist: yes!

• “there is an individual which is distinct from, Tom, Dick, Harry … and who wears a bat-mask, … and who is accompanied by another guy who wears a yellow cape…”
Abstract Realism – Worlds as States of Affairs

Possible Worlds

\(x \) is a possible world \(\iff x \) is a maximal consistent state of affairs.

• Wittgenstein’s being a philosopher.
• Rooney’s being a footballer.
 – These are states of affairs that obtain.

• Wittgenstein’s being a footballer.
• Rooney’s being a philosopher.
 – These are states of affairs that don’t obtain.
 – But they exist just as much as those which do obtain.
Abstract Realism – Worlds as States of Affairs

Possible Worlds

x is a possible world $\iff x$ is a maximal consistent state of affairs.

- Not any arbitrary state of affairs is a possible world:
 - Wittgenstein’s being a philosopher and not being a philosopher.
- To be a possible world a state of affairs must be consistent.
Possible Worlds

\(x \) is a possible world \(\iff \) \(x \) is a maximal consistent state of affairs.

- Not any arbitrary consistent state of affairs is a possible world:
 - Wittgenstein’s being a philosopher.
- To be a possible world a state of affairs must be \textit{maximal}.
Abstract Realism – Worlds as States of Affairs

Possible Worlds

• Consistency and maximality are defined as follows:

• S is consistent \iff It is possible that S obtains

• S is maximal \iff For every state of affairs S^*, S either includes S^* or precludes S^*

• S includes S^* \iff It is impossible that S obtains and S^* doesn’t.

• S precludes S^* \iff It is impossible that S and S^* both obtain.

• p is true at a maximal consistent state of affairs S \iff
 Necessarily (if S obtains then p)
Abstract Realism – Worlds as States of Affairs

1. Problem of Reduction

• Consistency and maximality are defined as follows:

• S is consistent \iff It is possible that S obtains

• S is maximal \iff For every state of affairs S^*, S either includes S^* or precludes S^*

• S includes S^* \iff It is impossible that S obtains and S^* doesn’t.

• S precludes S^* \iff It is impossible that S and S^* both obtain.

• p is true at a maximal consistent state of affairs S \iff Necessarily (if S obtains then p)
2. Problem of Expressive Power

- For every actual and non-actual individual there is a corresponding individual essence.

- The individual essence of x is a property F such that
 (i) x exemplifies F at every world at which it exists
 (ii) no individual other than x exemplifies F at any world.

- The individual essence of a contingent object is not exemplified at every world; but (like every property) it exists at every world.

- At the actual world there exists an (unexemplified) individual essence for each non-actual individual.

- Let E_1 and E_2 be two such individual essences.
2. Problem of Expressive Power

- There is a maximal consistent state of affairs S such that

 (i) Necessarily (if S obtains then there is an object which exemplifies E_1 and also exemplifies wearing a bat mask, …)

 (ii) Necessarily (if S obtains then there is an object which exemplifies E_2 and also exemplifies wearing a yellow cape, …)

- There is a maximal consistent state of affairs S such that

 (i) Necessarily (if S obtains then there is an object which exemplifies E_2 and also exemplifies wearing a bat mask, …)

 (ii) Necessarily (if S obtains then there is an object which exemplifies E_1 and also exemplifies wearing a yellow cape, …)
Abstract Realism

3. The Objection from Magic

• S represents that \(p \iff \text{Necessarily (if } S \text{ obtains then } p) \)
• S represents that there is a blue elephant\(\iff \)
 Necessarily, if S obtains then there is a blue elephant
• Consider the following states of affairs:
 – The (obtaining) state of affairs \(S_1 \) of there being a grey elephant
 – The (not-obtaining) state of affairs \(S_2 \) there being a blue elephant
• @ stands in a relation to \(S_1 \) in which it doesn’t stand to \(S_2 \)
• Lewis calls this the selection relation
• There is something problematic about this selection relation
Abstract Realism

3. The Objection from Magic

Selection Relation

Internal

External
Abstract Realism

3. The Objection from Magic

xRy is internal \iff R holds in virtue of the intrinsic nature of the relata x and y

- If an internal relation holds between two objects x and y, then it also holds between any perfect duplicate of x and any perfect duplicate of y
- *Example:* x is taller than y

xRy is external \iff R doesn’t hold in virtue of the intrinsic nature of the relata x and y

- An external relation can hold between two objects x and y while not holding between a perfect duplicate of x and a perfect duplicate of y
- *Example:* x is 1m apart from y
Abstract Realism

3. The Objection from Magic

Selection Relation

Internal

External

Magical connection between @ and S1
Abstract Realism

3. The Objection from Magic – External Horn

• We’re supposing that the selection relation between @ and S1 is external

• Necessarily (there are grey elephants at @ ↔ @ selects S1)

• An intrinsic aspect of one thing is necessarily connected with that thing standing in an external relation to some other thing

• According to Lewis such necessary connections are magical

• Necessarily (the table is wooden ↔ the table is 1m apart from the chair)

• Note: it’s not the relation of selection itself which holds necessarily

• It’s the relation: If there are grey elephants at x then x selects y
3. The Objection from Magic

Our grasp of the selection relation is magical

Magical connection between @ and S1
Abstract Realism

3. The Objection from Magic – Internal Horn

- We’re supposing that the selection relation between @ and S_1 is *internal*

- S_1 must have some intrinsic property in virtue of which it rather than S_2 is selected by @ if there is a grey elephant

- What’s that intrinsic property?

- A representational property. In particular: The property P of representing that there is a grey elephant

- Now the abstract realist owes us an account of what such representational properties are
3. The Objection from Magic

Selection Relation

Internal

$S1$ has intrinsic representational property P

Acquaintance with P

External

Magical connection between @ and $S1$
Abstract Realism

3. The Objection from Magic – Internal Horn

• S_1 must have some intrinsic property in virtue of which it rather than S_2 is selected by @ if there is a grey elephant

• What’s that intrinsic property?

• A representational property. In particular:
 The property P of representing that there is a grey elephant

• Now the abstract realist owes us an account of what such representational properties are

• Can we be acquainted with P?

• No, for by definition S_1 is abstract
Abstract Realism

3. The Objection from Magic

Selection Relation

Internal

S1 has intrinsic representational property P

Acquaintance with P

External

Magical connection between @ and S1

Analysis of P
3. The Objection from Magic – Internal Horn

- We cannot be acquainted with P
- $S1$ must have some intrinsic property in virtue of which it rather than $S2$ is selected by @ if there is a grey elephant
- What’s that intrinsic property?
- A representational property. In particular:
 The property P of representing that there is a grey elephant
- Now the abstract realist owes us an account of what such representational properties are
- Can we provide an analysis of P? Lewis finds the following not informative enough:
 - P is the property of representing that a there is a grey elephant \leftrightarrow
 Necessarily (S has P & S is selected \rightarrow there is a grey elephant)
Abstract Realism

3. The Objection from Magic

Selection Relation

Internal

S1 has intrinsic representational property P

Acquaintance with P

Our grasp of the selection relation is magical

Analysis of P

External

Magical connection between @ and S1
Abstract Realism

3. The Objection from Magic ... overgenerates

• Consider the relation of set-membership: \(x \in y \)

• It’s not an internal, but an external relation:
 – Note that \{John\} is a duplicate of itself
 – Let John* be a distinct duplicate of John
 – John \(\in \) {John} but John* \(\notin \) {John}

• Consider the set \{x: x is wooden\}

• Necessarily (if x is wooden then x \(\in \) \{x: x is wooden\})

• An intrinsic aspect of one thing is necessarily connected with that thing standing in an external relation to some other thing

• Set-membership gives rise to magical connections just as much the selection relation (if assumed to be external) does!