Modal Logic 4
Lecture Contents

- The notions of soundness and correspondence
- The notion of completeness
- Sketch of proofs of soundness, correspondence and completeness
Characterising logics

- We have characterised the logics K semantically and syntactically.
- We said that the logical truths of K are all those formulae that hold in any Kripke frame \mathcal{F}.
- We also said that the theorems of K are all those derivable from a particular axiom system.
- But do the two characterisations match?
- Are the theorems exactly the logical truths?
Soundness and Completeness

- Given our semantics for K, we can look at its axioms and ask
 1. Is every theorem of K a logical truth?
 2. Is every logical truth of K a theorem?
- If (1) holds then the axioms of K are *sound*.
- If (2) holds then the axioms of K are *complete*.
Correspondence

- We have also looked briefly at a related question.
- Given a formula A, we can ask what kind of Kripke frame will satisfy A under any valuation v.
- More specifically, what kind of frame \mathcal{F} is such that $\mathcal{F} \models A$?
- Remember that $\mathcal{F} \models A$ means that $\mathcal{F} \models^v_w A$ for every w given any v.
- So equivalently, what kind of frame \mathcal{F} is such that $\mathcal{F} \models^v_w A$ in all w under any v.
An example

- Remember axioms for the logic T. In particular the axiom:
 \[\square A \rightarrow A \]

- We can then ask:
 - Are all the axioms of T satisfied by reflexive Kripke frames (soundness)
 - Is any Kripke Frame that satisfies $\square A \rightarrow A$ reflexive? (correspondence)
 - Are all the formulae satisfied by all reflexive Kripke frames derivable from the axioms of T?
Proving Soundness (of T)

We want to show that if $\vdash_T A$ then $\mathcal{F} \models^\nu_w A$ for every ν, w, \mathcal{F} where $R \in \mathcal{F}$ is reflexive.

We must check that:

1. If A is any instance of an axiom (K) or (T) then $\mathcal{F} \models A$ in any reflexive \mathcal{F}.
2. If the premises of an inference rule (N) or (MP) are satisfied by any reflexive frame \mathcal{F} then so are the conclusions.

Then we will have shown that $\vdash_T A$ implies $\mathcal{F} \models A$ for any reflexive frame.
Something stronger

- Actually we can prove something stronger:
- If $\Gamma \vdash_T A$ then for every v, w, \mathcal{F} where $R \in \mathcal{F}$ is reflexive, if $\mathcal{F} \models^v_w B$ for all $B \in \Gamma$, then $\mathcal{F} \models^v_w A$.
Proving correspondence (of T)

- We want to show that if $\mathcal{F} \models \Box p \rightarrow p$, then \mathcal{F} is reflexive.
 - Take any $w \in \mathcal{F}$, and consider ν such that
 $\nu(p) = \{w' | wRw'\}$
 - Then $\mathcal{F} \vdash^\nu \Box p$
 - But since $\mathcal{F} \vdash^\nu \Box p \rightarrow p$ for all ν, we must have $\mathcal{F} \vdash^w \Box p$.
 - So $\mathcal{F} \vdash^\nu \Box p$ and so $w \in \{w' | wRw'\}$, so wRw'.

- Not all correspondence results are quite so simple.
Proving completeness for \(T \)

- We want to show that if \(\mathcal{F} \models^v_w A \) for every \(v, w, \mathcal{F} \) where \(R \in \mathcal{F} \) is reflexive, then \(\vdash_T A \).
- The standard proof assumes \(\not\vdash_T A \) and shows that some \(\mathcal{F} \not\models A \) for some reflexive \(\mathcal{F} \).
- Say that a set of formulae \(\Gamma \) is \textit{consistent} when no contradiction can be derived from it.
- So \(\Gamma \) is consistent in \(T \) if \(\Gamma \not\vdash_T A \land \neg A \).
- Say that \(\Gamma \) is \textit{complete} when, for every formula \(A \), either \(A \in \Gamma \) or \(\neg A \in \Gamma \).
- Notice that if \(\Gamma \) is complete and consistent then if \(\Gamma \vdash_T A \) then \(A \in \Gamma \).
Canonical frames

- First we show that if $\not\models_T A$ then there is a complete consistent set that contains $\neg A$.
- Now we build a Kripke frame out of all the complete consistent sets.
- We need to specify $\mathcal{F}_T = (W_T, R_T)$
 - We set W_T to be the set of all complete consistent sets.
 - We set $wR_T w'$ just in case $A \in w'$ whenever $\Box A \in w$ (for all formulae A).
- Notice that since $\Box A \rightarrow A$ is a theorem of T, it follows that $wR_T w$ for all w.
The canonical valuation

- Now we set \(v(p) = \{ w \in W_T \mid p \in w \} \)
- We then verify that \(F_T \models^v_w A \) iff \(A \in w \)
- And now, if \(\not\models_T A \), then there is a complete consistent set \(w \) which contains \(\neg A \).
- \(w \) is one of the worlds in the reflexive frame \(F_T \).
- But, since \(A \notin w \) it follows that \(F_T \not\models^v_w A \) under the valuation \(v \) described above.
- So if \(\not\models_T A \) then \(F \not\models^v_w A \) for some \(v, w \) in some reflexive \(F \).
Something stronger

- Actually we can prove something stronger:
 - If for every v, w, \mathcal{F} where $R \in \mathcal{F}$ is reflexive, $\mathcal{F} \models^v_w B$ for all $B \in \Gamma$ implies $\mathcal{F} \models^v_w A$, then $\Gamma \vdash_T A$.
It is not just for T

- We can show that many axiomatisations are sound, complete and correspond to Kripke frames with certain conditions on the accessibility relation R.

 K Kripke frames
 T reflexive Kripke frames $\quad \Box A \rightarrow A$
 B symmetric Kripke frames $\quad A \rightarrow \Box \Diamond A$
 4 transitive Kripke frames $\quad \Box A \rightarrow \Box \Box A$
 5 Euclidean Kripke frames $\quad \Diamond A \rightarrow \Box \Diamond A$
 D Serial Kripke frames $\quad \Box A \rightarrow \Diamond A$

- We can also show that combining axioms combines the properties. So

 $S4 = KT4$

 and

 $S5 = KT4B = KT5$

- In fact, we can show that all these logics are complete for finite frames, implying they are all decidable.