Metaphysics of Modality

Lecture 1: Introducing Modality

Daisy Dixon
dd426
1. Introducing modality
1. Introducing modality

- The phenomenon of possibility and necessity
1. Introducing modality

- The phenomenon of possibility and necessity

1. Mark could have been an ancient historian (metaphysical)
1. Introducing modality

• The phenomenon of possibility and necessity

1. Mark could have been an ancient historian (metaphysical)
2. All robins must be birds (metaphysical)
1. Introducing modality

• The phenomenon of possibility and necessity

1. Mark could have been an ancient historian (metaphysical)
2. All robins must be birds (metaphysical)
3. It cannot be both raining and not raining (logical)
1. Introducing modality

- The phenomenon of possibility and necessity

1. Mark could have been an ancient historian (metaphysical)
2. All robins must be birds (metaphysical)
3. It cannot be both raining and not raining (logical)
4. 2 plus 2 must equal 4 (mathematical)
1. Introducing modality

• The phenomenon of possibility and necessity

1. Mark could have been an ancient historian (metaphysical)
2. All robins must be birds (metaphysical)
3. It cannot be both raining and not raining (logical)
4. 2 plus 2 must equal 4 (mathematical)
5. Mark might be an ancient historian (epistemic)
1. Introducing modality

- The phenomenon of possibility and necessity

1. Mark could have been an ancient historian (metaphysical)
2. All robins must be birds (metaphysical)
3. It cannot be both raining and not raining (logical)
4. 2 plus 2 must equal 4 (mathematical)
5. Mark might be an ancient historian (epistemic)
6. Mark might have found the One (epistemic)
1. Introducing modality

- The phenomenon of possibility and necessity

1. Mark could have been an ancient historian (metaphysical)
2. All robins must be birds (metaphysical)
3. It cannot be both raining and not raining (logical)
4. 2 plus 2 must equal 4 (mathematical)
5. Mark might be an ancient historian (epistemic)
6. Mark might have found the One (epistemic)
7. You cannot castle if your King is in check (deontic)
1. Introducing modality

- The phenomenon of possibility and necessity

1. Mark could have been an ancient historian (metaphysical)
2. All robins must be birds (metaphysical)
3. It cannot be both raining and not raining (logical)
4. 2 plus 2 must equal 4 (mathematical)
5. Mark might be an ancient historian (epistemic)
6. Mark might have found the One (epistemic)
7. You cannot castle if your King is in check (deontic)
8. You cannot promise to help me and then not help me (deontic)
1. Introducing modality

• The phenomenon of possibility and necessity

1. Mark could have been an ancient historian (metaphysical)
2. All robins must be birds (metaphysical)
3. It cannot be both raining and not raining (logical)
4. 2 plus 2 must equal 4 (mathematical)
5. Mark might be an ancient historian (epistemic)
6. Mark might have found the One (epistemic)
7. You cannot castle if your King is in check (deontic)
8. You cannot promise to help me and then not help me (deontic)
2. Philosophical Contexts
2. Philosophical Contexts

• Counterfactuals
2. Philosophical Contexts

• Counterfactuals

Decision making: If Mark hadn’t decided to hide he wouldn’t have ruined his wedding (he *could* have done otherwise)
2. Philosophical Contexts

• Counterfactuals

Decision making: If Mark hadn’t decided to hide he wouldn’t have ruined his wedding (he *could* have done otherwise)
2. Philosophical Contexts

• Counterfactuals

Decision making: If Mark hadn’t decided to hide he wouldn’t have ruined his wedding (he *could* have done otherwise)

Laws: If some salt were in water, it *would* dissolve
2. Philosophical Contexts

• Counterfactuals

Decision making: If Mark hadn’t decided to hide he wouldn’t have ruined his wedding (he *could* have done otherwise)

Laws: If some salt were in water, it *would* dissolve

Causation: A causes B iff B *wouldn’t* have occurred if A hadn’t had occurred
2. Philosophical Contexts

- **Dispositions**

This mug is fragile/cheap mugs have a tendency to chip
2. Philosophical Contexts
2. Philosophical Contexts

• Supervenience
2. Philosophical Contexts

• **Supervenience**

A-facts supervene on B-facts iff there *could be no change in the* A-facts *without some change in the B-facts*
2. Philosophical Contexts

• **Supervenience**
 A-facts supervene on B-facts iff there *could be no change in the A-facts without some change in the B-facts*

• **Logic**
2. Philosophical Contexts

• **Supervenience**

A-facts supervene on B-facts iff there *could be no change* in the A-facts without some change in the B-facts

• **Logic**

Mathematic and logical truths are *necessarily* true, as opposed to those contingent truths of the natural sciences
2. Philosophical Contexts

• Supervenience
A-facts supervene on B-facts iff there could be no change in the A-facts without some change in the B-facts

• Logic
Mathematic and logical truths are necessarily true, as opposed to those contingent truths of the natural sciences
Validity is a modal notion
3. Language for modal logic
3. Language for modal logic

◊ “Diamond” *It is possible that*...
3. Language for modal logic

◊ “Diamond” *It is possible that…*

□ “Box” *It is necessary that…*
3. Language for modal logic

◊ “Diamond” *It is possible that*…

□ “Box” *It is necessary that*…

“It’s possible that there are pink swans”
3. Language for modal logic

◊ “Diamond” \(\text{It is possible that...}\)
□ “Box” \(\text{It is necessary that...}\)

“It’s possible that there are pink swans”
◊\(\exists x (Sx \& Px)\)
3. Language for modal logic

◊ “Diamond” *It is possible that…*
□ “Box” *It is necessary that…*

“It’s possible that there are pink swans”
◊∃x(Sx & Px)

“Necessarily, all swans are birds”
3. Language for modal logic

◊ “Diamond” *It is possible that…*

□ “Box” *It is necessary that…*

“It’s possible that there are pink swans”
◊ ∃x(Sx & Px)

“Necessarily, all swans are birds”
□ ∀x(Sx → Bx)
3. Language for modal logic
3. Language for modal logic

\[\square A \iff \neg \lozenge \neg A \]
3. Language for modal logic

\[\square A \leftrightarrow \neg \lozenge \neg A \]

\[\diamond A \leftrightarrow \neg \square \neg A \]
4. *De Dicto* and *De Re* modality
4. *De Dicto* and *De Re* modality

(1) The number of planets in our solar system is necessarily greater than 5
4. *De Dicto* and *De Re* modality
4. *De Dicto* and *De Re* modality

(2) There could have been pink swans
- It’s possible that there are pink swans
- $\Diamond \exists x (P_x \& S_x)$
4. *De Dicto* and *De Re* modality

(2) There could have been pink swans
- It’s possible that there are pink swans
- ◊∃x(Px & Sx)

(3) All robins must be birds
- It’s necessary that all robins are birds
- □∀x(Rx → Bx)
4. *De Dicto* and *De Re* modality

(2) There could have been pink swans
- It’s possible that there are pink swans
- $\Diamond \exists x (P_x \& S_x)$

(3) All robins must be birds
- It’s necessary that all robins are birds
- $\Box \forall x (R_x \rightarrow B_x)$
4. *De Dicto* and *De Re* modality
4. *De Dicto* and *De Re* modality

(4) Mark could have had a daughter
- It’s possible that Mark has a daughter
- ◊Dm
4. *De Dicto* and *De Re* modality

(4) Mark could have had a daughter
- It’s possible that Mark has a daughter
- ◊Dm

(5) Any robin must be bird
- For any robin, it’s necessary that it’s a bird
- ∀x(Rx→□Bx)
4. *De Dicto* and *De Re* modality

(4) Mark could have had a daughter
- It’s possible that Mark has a daughter
- ◊Dm

(5) Any robin must be bird
- For any robin, it’s necessary that it’s a bird
- ∀x(Rx→◻Bx)

A formula with modal operators is *de re* iff it contains a modal operator \(R \) which has within its scope either (1) an individual constant, or (2) a free variable, or (3) a variable bound by a quantifier not within \(R \)’s scope. All other formulae with modal operators are *de dicto*.
4. *De Dicto* and *De Re* modality

- The Barcan Formula:

\[\Diamond \exists x F_x \rightarrow \exists x \Diamond F_x \]
4. *De Dicto* and *De Re* modality

\[\Diamond \exists x Fx \rightarrow \exists x \Diamond Fx \]

- There could have been an individual that was a child of Wittgenstein
4. *De Dicto* and *De Re* modality

\[\Diamond \exists x Fx \rightarrow \exists x \Diamond Fx \]

- There could have been an individual that was a child of Wittgenstein (true)
4. *De Dicto* and *De Re* modality

\[\Diamond \exists x Fx \rightarrow \exists x \Diamond Fx \]

- There could have been an individual that was a child of Wittgenstein *(true)*
- There is an individual that could have been the child of Wittgenstein *(false)*
4. *De Dicto* and *De Re* modality
4. *De Dicto* and *De Re* modality

- (6) Necessarily, the thing Sophie is thinking about is prime (*de dicto*) \textcolor{red}{False}
4. *De Dicto* and *De Re* modality

- (6) Necessarily, the thing Sophie is thinking about is prime (*de dicto*) False

- (7) The thing Sophie is thinking about is necessarily prime (*de re*) True
4. *De Dicto* and *De Re* modality

(1) The number of planets in our solar system is necessarily greater than 5

- Read *de dicto* about the number of planets our solar system happens to have: \(\square \forall x (N x \rightarrow G x) \)
 False
4. *De Dicto* and *De Re* modality

(1) The number of planets in our solar system is necessarily greater than 5

- Read *de re* about the **number** of planets itself:
 \[\forall x (N_x \rightarrow \Box G_x) \text{ True} \]
5. Possible Worlds
5. Possible Worlds

- What logical principles do ‘□’ and ‘◊’ obey?
5. Possible Worlds

- What logical principles do ‘□’ and ‘◊’ obey?
- Truth tables?
5. Possible Worlds

- What logical principles do ‘☐’ and ‘◊’ obey?
- Truth tables?

<table>
<thead>
<tr>
<th>A</th>
<th>¬A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
5. Possible Worlds

• What logical principles do ‘□’ and ‘◊’ obey?
• Truth tables?

<table>
<thead>
<tr>
<th>A</th>
<th>¬A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>◊A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>?</td>
</tr>
</tbody>
</table>
5. Possible Worlds

• What logical principles do ‘□’ and ‘◊’ obey?
• Truth tables?

<table>
<thead>
<tr>
<th>A</th>
<th>¬A</th>
<th>A</th>
<th>◊A</th>
<th>A</th>
<th>□A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>?</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>?</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
5. Possible Worlds

- What logical principles do ‘□’ and ‘◊’ obey?
- Truth tables?

<table>
<thead>
<tr>
<th>A</th>
<th>¬A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>◊A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>□A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>?</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- The modal operators resist a truth-functional analysis.
5. Possible Worlds
\(\Diamond p \) is true iff there is some world \(w \), such that \(p \) is true at \(w \)
5. Possible Worlds

◊p is true iff there is some world w, such that p is true at w

□p is true iff for any world w, p is true at w
5. Possible Worlds

✓ Applies to counterfactual discourse:

(8) If Cameron hadn’t promised a referendum on the EU, Brexit wouldn’t have happened.

• In the world that is closest to (most similar to) our world where Cameron is PM and there are apparent EU issues (etc.), Cameron doesn’t promise a referendum and Brexit does not happen.
5. Possible Worlds

✓ Applies to supervenience discourse:

“Among all the worlds, or among all the things in all the worlds...there is no difference of the one sort without difference of the other sort” (Lewis, 1986: 17).
6. The Debate

<table>
<thead>
<tr>
<th></th>
<th>Are there modal truths?</th>
<th>If so, should we give a possible world analysis?</th>
<th>If so, should we give a theory of what possible worlds are?</th>
<th>If so, are possible worlds concrete or abstract?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalism</td>
<td>✓</td>
<td>×</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Concrete Realism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Concrete</td>
</tr>
<tr>
<td>Abstract Realism/Actualism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Abstract</td>
</tr>
<tr>
<td>(Plantinga, Adams, Stalnaker, Carnap)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual approach (Baldwin, Thomasson, Blackburn)</td>
<td>✓</td>
<td>?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Error Theory (Quine)</td>
<td>×</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fictionalism (Rosen, Yablo, Divers)</td>
<td>?</td>
<td>In a way…</td>
<td>×</td>
<td>-</td>
</tr>
</tbody>
</table>

Questions taken from Mat Simpson’s Metaphysics of Modality lectures 2015-2016, University of Cambridge
6. The Debate

<table>
<thead>
<tr>
<th></th>
<th>Are there modal truths?</th>
<th>If so, should we give a possible world analysis?</th>
<th>If so, should we give a theory of what possible worlds are?</th>
<th>If so, are possible worlds concrete or abstract?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modalism</td>
<td>✓</td>
<td>✗</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Concrete Realism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Concrete</td>
</tr>
<tr>
<td>Abstract Realism/Actualism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Abstract</td>
</tr>
<tr>
<td>(Plantinga, Adams, Stalnaker, Carnap)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual approach (Baldwin, Thomasson, Blackburn)</td>
<td>✓</td>
<td>?</td>
<td>✗</td>
<td>-</td>
</tr>
<tr>
<td>Error Theory (Quine)</td>
<td>✗</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fictionalism (Rosen, Yablo, Divers)</td>
<td>?</td>
<td>In a way…</td>
<td>✗</td>
<td>-</td>
</tr>
</tbody>
</table>

Questions taken from Mat Simpson's Metaphysics of Modality lectures 2015-2016, University of Cambridge
Criteria for assessment
Criteria for assessment

✓ **Fidelity to modal opinion**: A theory should ratify the substantial body of prior modal opinion.
Criteria for assessment

✓ **Fidelity to modal opinion**: A theory should ratify the substantial body of prior modal opinion

✓ **Ontology**: A theory should hold a firm ontological view of reality
Criteria for assessment

✓ **Fidelity to modal opinion**: A theory should ratify the substantial body of prior modal opinion

✓ **Ontology**: A theory should hold a firm ontological view of reality

✓ **Ideology**: A theory should give a reductive analysis of modality with few primitives (primitives are resources in your theory which are not to be further explained or analysed)
Criteria for assessment

✓ Fidelity to modal opinion: A theory should ratify the substantial body of prior modal opinion

✓ Ontology: A theory should hold a firm ontological view of reality

✓ Ideology: A theory should give a reductive analysis of modality with few primitives (primitives are resources in your theory which are not to be further explained or analysed)

✓ Explanatory power: A theory should be able to analyse many modal claims without much trouble
Criteria for assessment

✓ **Fidelity to modal opinion**: A theory should ratify the substantial body of prior modal opinion

✓ **Ontology**: A theory should hold a firm ontological view of reality

✓ **Ideology**: A theory should give a reductive analysis of modality with few primitives (primitives are resources in your theory which are not to be further explained or analysed)

✓ **Explanatory power**: A theory should be able to analyse many modal claims without much trouble

✓ **Epistemology**: A theory shouldn’t mystify the fact that we possess a lot of modal knowledge
Next lecture: David Lewis’s Concrete Modal Realism