Goedel’s Theorem 8
Lecture Contents

- The idea of diagonalisation
- How to construct a ‘canonical’ Goedel sentence
- If an axiomatised theory is sound, it is negation incomplete
- Applying that to \(PA \)
- \(\omega \)-incompleteness, \(\omega \)-inconsistency
- If \(PA \) is \(\omega \)-consistent, it is negation incomplete
- Generalising that result to \(\omega \)-consistent an axiomatised theories which extend \(Q \)
Review

- Fix a suitable Gödel coding of wffs and strings of wffs of L_A.
- $Prf_Z(m, n)$ is the relation which holds just if m is the g.n. of a sequence of wffs that is a Z derivation of a sentence with g.n. n. This relation is decidable if Z is (recursively) axiomatisable.
- Any recursive function or relation can be expressed by a wff of L_A.
- The axiom of induction which strengthens Q to PA.
- Any recursive function or relation can be captured in Q and hence in PA.
We will form an L_{A_1} wff U and then substitute its own g.n. \overline{U} into it: $U[\overline{U}]$.

The action of substituting-its-own-g.n. is called *diagonalisation*.

The diagonalisation of ϕ is $\phi[\overline{\phi}]$, i.e. $\phi[x_1/\overline{\phi}]$.
Diagonalisation

- We could also define it as $\exists x_1 (x_1 = \overline{\phi n} \land \phi)$.
- There is a (p.r.) function $diag(n)$ which, when applied to a number n which is the g.n. of some wff, yields the g.n. of that wff’s diagonalisation [we need to make use of (p.r.) concatenation and a (p.r.) function that takes a number and returns the Goedel number of its numeral].
Goedel’s sentence

- The relation $Gdl_Z(m, n)$ is defined to hold just when m is the super g.n. for a Z-proof of the diagonalisation of the wff with g.n. n.
- $Gdl_Z(m, n)$ is recursive just in case Prf_Z and $diag$ are recursive.
- If Gdl_Z is recursive then it can be expressed (and captured in Q) by Σ_1 wff Gdl_Z.
Now consider \(U_Z = \forall x \neg \text{Gdl}_Z[x, x_1] \).

Now diagonalise \(U_Z \) to obtain \(G_Z \):

\[
U_Z[\neg U_Z]
\]

which is equivalent to (or we could alternatively use)

\[
\exists x_1 (x_1 = \neg U_Z \land U_Z)
\]

\(G_Z \) is \(\Pi_1 \) as it is (equivalent to) the negation of a \(\Sigma_1 \) wff.
G_Z and incompleteness

G_Z is true iff G_Z is not derivable in Z.

G_Z is true
iff $U_Z[\neg U_Z]$ is true
iff $\forall x \neg \text{Gd}_Z[x, \neg U_Z]$ is true
iff no m is the g.n. for a Z-proof of the diagonalisation of the wff with g.n. $\neg U_Z$
iff $U_Z[\neg U_Z]$ is not derivable in Z
iff G_Z is not derivable in Z
If PA is sound, then there is a true Π_1 sentence G such that
$PA \not\vDash G$ and $PA \not\vDash \neg G$, so PA is negation incomplete.

First verify that the axioms of PA are indeed a recursive set
(the axioms of Q certainly are).

Set G to be G_{PA}.

Then $PA \vdash G$ iff G is false, so if PA is sound then G is true
and $PA \not\vDash G$.

But if PA is sound then also $PA \not\vDash \neg G$.

G_z and incompleteness
If T is a sound axiomatised theory (i.e. Prf_T is recursive) whose language contains the language of basic arithmetic, then there will be a true Π_1 sentence G_T such that $T \nvdash G_T$ and $T \nvdash \neg G_T$, so T is negation incomplete.
Another way of looking at it

- Let $P(m, \neg \phi, n)$ hold just when m numbers a derivation in T of $\phi[\overline{n}]$ (i.e. of $\phi[x_1/\overline{n}]$). This is recursive.
- Now consider $P(x_1, x_2, x_2)$, this can be captured in Q by the L_{A2} wff Φ_G.
- Now consider $\forall x \neg \Phi_G[x, \neg \forall x \neg \Phi_G[x, x_1]]$. This is a Goedel sentence.
Is this the result we want?

- If T is a sound formal axiomatised theory whose language contains the language of basic arithmetic, then there will be a true sentence G_T of basic arithmetic such that $T \not\models G_T$ and $T \not\models \neg G_T$, so T is negation incomplete.

- The Goedel sentence we have obtained turns out to be Π_1.
ω-completeness, ω-consistency

- A theory T is ω-incomplete iff, for some open wff ϕ, $T \vdash \phi[x/\bar{n}]$ for each natural number n, but $T \not\vdash \forall x \phi$.
- \mathbb{Q} is ω-incomplete, consider $\forall x(x \neq sx)$.
- A theory T is ω-inconsistent iff, for some open wff ϕ, $T \vdash \phi[x/\bar{n}]$ for each natural number n, but $T \vdash \neg\forall x \phi$.
- Similarly for the existential quantifier.
- If T is ω-inconsistent then T’s axioms cant all be true on an arithmetically standard interpretation.
Goedel sentence and consistency

If PA is consistent, $PA \not\vdash G_{PA}$.

$PA \vdash G_{PA}$ implies some m is the g.n. for a PA proof of G_{PA}
implies some m is the g.n. for a PA proof of the
diagonalisation of the wff with g.n. $\neg U_{PA}$
implies $Gdl(m, \neg U_{PA})$
implies $PA \vdash Gdl_{PA}[m, \neg U_{PA}]$
implies $PA \vdash \neg \forall x_1 \neg Gdl_{PA}[x_1, \neg U_{PA}]$

But G_{PA} is equivalent to $\forall x_1 \neg Gdl_{PA}[x_1, \neg U_{PA}]$ and so PA is inconsistent.
Goedel sentence and ω-completeness

- If PA is consistent, PA is ω-incomplete.
 - If PA is consistent then $PA \not\vdash G_{PA}$, so
 \[PA \not\vdash \forall x \neg \text{Gdl}_{PA}[x, \overline{U_{PA}}] \]
 - but then $\neg Gdl(n, \overline{U_{PA}})$ for all n, so:
 \[PA \vdash \neg \text{Gdl}_{PA}[\overline{n}, \overline{U_{PA}}] \]
 for each \overline{n}. So PA is ω-incomplete.
Goedel sentence and ω-completeness

- If PA is ω-consistent, $PA \not\vdash \neg G_{PA}$.
 - If PA is ω-consistent then then PA is consistent so $PA \not\vdash \neg Gd_{PA}[\overline{n}, \overline{U_{PA}}]$ for each \overline{n}.
 - But then $PA \not\vdash \neg G_{PA}$ implies
 \[PA \vdash \exists x Gd_{PA}[x, \overline{U_{PA}}] \]
 and PA is ω-inconsistent. So $PA \not\vdash \neg G_{PA}$.
The syntactic argument

- If PA is ω-consistent, then there is a Π_1 sentence G such that $PA \not\vdash G$ and $PA \not\vdash \neg G$
- If T is an ω-consistent axiomatised theory, then there is a Π_1 sentence G_T such that $T \not\vdash G_T$ and $T \not\vdash \neg G_T$
- This is the first incompleteness theorem.
Some corollaries

- If T is sound and contains \mathbb{Q} then $\text{theorem-of-}T$ is not recursive. Because if Prf_T were recursive then it would be captured by Prf_T and either G_T or $\neg G_T$ would be derivable.
- If T has the natural numbers as a model then $\text{theorem-of-}T$ is not recursive. Because $\text{theorem-of-}T + \mathbb{Q}$ cannot be recursive by the above.