(a) A truth-function is a function that takes one or many truth-values as inputs and gives a truth-value as an output.

(ii) A set of sentences P_1, P_2, \ldots, P_n tautologically entails a sentence Q if and only if there is no assignment of truth values to the atoms of P_1, P_2, \ldots, P_n and Q on which P_1, P_2, \ldots, P_n are all true and Q is false.

(iii) The material conditional \supset is the two-place propositional connective such that $P \supset Q$ is true unless P is true and Q is false.

(iv) The metalanguage is the language in which one describes properties and relations of elements of the object language e.g. tautological entailment.

(b) A system that is sound but not complete is the system that allows nothing to be deduced from anything.

(ii) A system that is complete but not sound is the system that allows anything to be deduced from anything.

(c) To say that a truth-function can be expressed by \land, \lor and \neg is to say that every truth function is some combination of these truth-functions. To prove it: consider a truth-function G that takes n truth-values to a truth-value. Then G's truth-table is as follows:

<table>
<thead>
<tr>
<th>P_1</th>
<th>P_2</th>
<th>\ldots</th>
<th>P_n</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>\ldots</td>
<td>T</td>
<td>X_1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>\ldots</td>
<td>T</td>
<td>X_2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>\ldots</td>
<td>T</td>
<td>X_3</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>\ldots</td>
<td>F</td>
<td>X_4</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>\ldots</td>
<td>F</td>
<td>X_k</td>
</tr>
</tbody>
</table>

Each of X_1, X_2, \ldots, X_k is either T or F. Consider all the rows j_1, j_2, \ldots, j_q in which $X_j = T$. Call each such row a good row. Now define for each i:
\[H(P_i, m) = P_i \text{ if } P_i \text{ is } T \text{ in row } m \]
\[H(P_i, m) = \neg P_i \text{ if } P_i \text{ is } F \text{ in row } m \]
\[E(m) = H(P_1, m) \land H(P_2, m) \land \ldots \land H(P_n, m) \]

Then \(G(P_1, \ldots, P_n) = E(j_1) \lor E(j_2) \lor \ldots \lor E(j_3) \) where \(j_1, j_2, \ldots, j_3 \) index all and only the good rows. And clearly \(E(j_1) \lor E(j_2) \lor \ldots \lor E(j_3) \) involves only \(\land, \lor \) and \(\neg \).

2. (a)

(i) \[Lkj = \neg M \]

(ii) \[\forall x (\neg \exists y Lxy \supset (\neg Lxj \land \neg Lxk)) \]

(iii) \[\neg Mj \supset \forall x (Lkx = x = j) \]

(iv) \[\exists x \exists y \forall z (((z \neq y \lor z \neq x) \land Lzj) = (z = x \lor z = y)) \land Mx = \neg My \]

(v) \[\exists x \exists y \forall z ((Bz = z = x) \land (Mz = z = y) \land (Lzy \supset \neg Lzx)) \]

(vi) \[\forall x \forall y ((Bx \land By \land y \neq x \land Lxk \land Lyk) \supset (Lxy \land Lyx)) \]
(b) (i)

\[M_j \land \forall x (L_{jx} \equiv L_{kx}) \]

\[\forall x (M_{xj} \circ L_{kx}) \]

\[\neg L_{ij} \]

\[M_j \]

\[\forall x (L_{jx} \equiv L_{kx}) \]

\[L_{ij} \equiv L_{kj} \]

\[M_j \circ L_{kj} \]

\[\neg M_j \]

\[L_{kj} \]

\[\neg \neg \]

\[L_{ij} \]

\[L_{kj} \]

\[L_{ij} \]

\[\neg \neg \]
(b) (ii)

\[\forall x (M(x) \equiv x = k) \land B \]

\[\neg \forall x ((M(x) \land B(x)) \equiv x = k) \]

\[\exists x \forall x ((M(x) \land B(x)) \equiv x = k) \]

\[\forall x (((M(x) \land B(x)) \equiv x = k) \land B) \]

\[\neg M(a) \equiv a = k \]
(b) (iii)

\[\forall x \exists y (L_y \land B_y \land L_y \land B_y) \Rightarrow TL_{KB} \]

\[\forall y (L_y \land B_y \land L_y \land B_y) \Rightarrow TL_{KB} \]

\[L_{KB} \Rightarrow T_{KB} = j \]

\[TL_{KB} \]

\[TL_{KB} \]

\[L_{KB} \Rightarrow B = j \]

\[\forall x (\exists y (L_y \land B_y \land L_y \land B_y) \Rightarrow TL_{KB}) \]

\[\exists y (L_y \land B_y \land L_y \land B_y) \Rightarrow TL_{KB} \]

\[TL_{KB} \]
3.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>x is y's father</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>x is a brother of y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>x is y's only sibling</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>x and y have no common ancestor</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>x is an ancestor of y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>x loves y = y loves x</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>x loves y v y loves x</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>∀z (x loves z = z loves y)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>x loves John = y loves Jane</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Majority pref.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

4.

(a) This only holds if 5 black socks and 1 white sock so the answer is 0

(b) \(\Pr (2B \mid 1B) = \frac{\Pr (2B)}{\Pr (1B)} = \frac{0.25}{0.75} = \frac{1}{3} \)

(c) \(\Pr (2B \mid 1BM) = \frac{\Pr (2B \land 1BM)}{\Pr (1BM)} = \frac{13/196}{27/196} = \frac{13}{27} \)

(d) Use the formula:
\[
\Pr (A \mid T) = \frac{\Pr (T \mid A) \Pr (A)}{[\Pr (T \mid A) \Pr (A) + \Pr (T \mid B) \Pr (B)]} = \frac{(1/2 \times 1/2)}{[(1/2 \times 1/2) + (2/3 \times 1/2)]} = \frac{3}{7}
\]

(e) use the same formula as in (d): the answer is
\[
\frac{(0.9 \times 0.2)}{(0.9 \times 0.2) + (0.1 \times 0.8)} = \frac{9}{13}
\]