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Paper 5 
 
FORMAL METHODS 
 
Answer all questions in Section A. Each question in Section A is worth 9 marks. 
 
Answer two questions from Section B. Each question in Section B is worth 20 
marks. 
 
Write the number of the question at the beginning of each answer 
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SECTION A  
 
 
(1) Which of the following claims are true, and which are false?  Briefly explain your 
answers. 
 
 (a) Every argument with a tautological premise is valid. 
 
 (b) If two sentences are provably equivalent, then they are tautologically 
equivalent. 
 
 (c) No sound argument has a false conclusion. 
 
(2) Demonstrate the truth of the following claims, either by providing a truth table or 
counter-interpretation: 
 
 (a) 𝑃 ↔ 𝑄, ¬(𝑃 ∧  𝑄) ⊨ ¬𝑄 
 
 (b) 𝑃 → (𝑄 → 𝑅), ¬𝑅, ¬𝑄 ⊭ 𝑃 
 
 (c) ∃𝑥∀𝑦(𝐹𝑦 ↔ 𝑥 = 𝑦), ∃𝑥(𝐺𝑥 ∧ ∀𝑦(𝐺𝑦 → 𝑥 = 𝑦)) ⊭ ∃𝑥∃𝑦(𝐹𝑥 ∧ 𝐺𝑦 ∧ ¬𝑥 = 𝑦) 
 
(3) Prove the following using the proof system from forallx: Cambridge: 
 
 (a) 𝐴 ∨ 𝐵, 𝐵 → 𝐶, 𝐴 → 𝐶 ⊢ 𝐶 
 
 (b) 𝐴 → 𝐵, ¬𝐶 → ¬𝐵 ⊢ 𝐴 → 𝐶 
 
 (c) ∃𝑥𝐹𝑥, ∀𝑥(𝐹𝑥 → 𝐺𝑥) ⊢ ¬∀𝑥¬𝐺𝑥 
 
(4) Let A = {Boris, Jeremy} and B = {Jeremy, Jo, Nicola}.  Give the members of the 
following: 
 
 (a) 𝒫(𝐴) − 𝐴 
 
 (b) (𝐴 ∩ 𝐵) ×  𝐴 
 
 (c) 𝒫((𝐴 ∪ 𝐵) ∩ (𝐴 ∩ 𝐵)) 
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(5) An urn contains 5 blue balls, 5 yellow balls, 4 red balls, and 6 white balls, and 
nothing else.  Two draws are made from the urn at random without replacement.  
Calculate the probability of: 
 
 (a) drawing exactly one blue ball. 
 
 (b) drawing at least one yellow ball. 
 
 (c) drawing at least one yellow ball conditional on drawing exactly one blue 
ball. 
 
 
 
SECTION B 
 
 
(6)  (a) Using the following symbolisation key: 
 
  Domain: people 
  a: Alfred 
  b: Bertrand 
  L: _____1 is a logician 
  P: _____1 is a philosopher 
  B: _____1 wrote a book with _____2 

 
symbolise the following arguments in FOL, commenting on any difficulties or 
limitations. 
 

(i)  Alfred wrote a book with Bertrand only if he wrote a book with a 
logician, but all logicians are philosophers, so if Alfred didn’t write a 
book with a philosopher, then he didn’t write a book with Bertrand. 
 
(ii) If Alfred wrote a book with Bertrand, then everyone did.  And, 
certainly, someone wrote a book with Bertrand; so Bertrand must have 
written a book with himself! 
 
(iii) Every philosopher has written a book with a logician, so there’s a 
logician with whom every philosopher has collaborated. 
 
(iv) It’s not the case that: Alfred is a philosopher just in case he’s a 
logician.  So he’s not a philosopher if, and only if, he’s a logician. 
 
(v) Bertrand must be a philosopher.  After all, someone is a philosopher 
and Bertrand is the only philosopher. 
 
(vi) Alfred wrote a book with Bertrand, and Alfred is both a philosopher 
and a logician.  So there is at least one philosopher with whom 
Bertrand has written a book. 
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(b) For each of the arguments in part (a), decide whether they are valid or 
invalid.   
For each valid argument, provide a proof using the system from forallx: 
Cambridge.  For each invalid argument, provide a counter-interpretation. 
 
 

 (7) (a) Provide natural deduction proofs for the following: 
 
  (i) ⊢ ∃𝑥 𝑥 = 𝑥 
 
  (ii) ⊢ ∃𝑥(𝐹𝑥 ∨ ¬𝐹𝑥) 
 
  (iii) ∀𝑥𝐹𝑥 ⊢ ∃𝑥𝐹𝑥 
 
 (b) Explain why the semantics of FOL justifies the claims made in part (a). 
 

(c) Explain why we typically use natural deduction to prove validity and we 
typically use the semantics to prove invalidity in FOL. 
 
(d) In TFL, if an argument is valid, then its conclusion can be proved from its 
premises.  If we removed TND from the basic rules of inference, explain why 
this would no longer hold. 
 
(e) In FOL, if a sentence is a theorem, then it is a logical truth.  Give an 
example of a rule we could add to the deductive system of FOL so that this 
would no longer hold. 
 
(f) What is wrong with the following semantic clause for the universal 
quantifier? 
  

‘∀𝒙𝑨(… 𝒙 … 𝒙 … )’ is true in an interpretation iff ‘𝑨(… 𝒄 … 𝒄 … )’ is true for 
every name c in the language of FOL. 
 

 
(8)   

(a) A relation R is serial on a set S iff for every 𝑥 ∈ 𝑆 there is some 𝑦 ∈ 𝑆 such   
that (𝑥, 𝑦) ∈ 𝑅. 

  
(i) Is every relation which is reflexive on a set also serial on that set?  
Substantiate your answer. 
 
(ii) Give an example of a relation which is serial but not reflexive on a 
set. 

 
(iii) If a set contains exactly one member, must a serial relation on that 
set be reflexive on that set?  Substantiate your answer. 

 
(b) Can a relation be both reflexive and not symmetric on a single set?  
Substantiate your answer. 
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(c) Can a non-empty anti-symmetric relation on a set be anti-reflexive on that 
set? Substantiate your answer.  
 
 (d) A relation R is sour on a set S iff for every distinct 𝑥, 𝑦 ∈ 𝑆, either (𝑥, 𝑦) ∈
𝑅 or (𝑦, 𝑥) ∈ 𝑅.  A relation R is sweet on a set S iff for every 𝑥, 𝑦 ∈ 𝑆, there is 
some 𝑧 ∈ 𝑆 such that (𝑥, 𝑧), (𝑦, 𝑧) ∈ 𝑅. 
 

(i) Show that every relation which is reflexive and sour on a set is also 
sweet on that set. 
(ii) Give an example of a relation which is reflexive and sweet on a set 
but not sour on that set. 

 
  
(e) Answer each of the following and substantiate your answer in each case. 
   

(i) If R and 𝑅′ are both symmetric relations on a given set, is 𝑅 ∪ 𝑅′ also 
symmetric on that set? 
(ii) If R and 𝑅′ are both transitive relations on a given set, is 𝑅 ∪ 𝑅′ also 
transitive on that set? 

 
 
 
(9)  (a) Prove the following and justify each step of the proof:  
 
  

Pr(𝐻|𝐸) =  
Pr(𝐸|𝐻) Pr(𝐻)

Pr(𝐻) Pr(𝐸|𝐻) + Pr(𝐻) Pr(𝐸|𝐻) 

 
(b) 2 out of 9,000 Wonka Bars contain a golden ticket.  There is a scanner for 
detecting whether a Wonka Bar contains a golden ticket.  If the Wonka Bar 
contains a golden ticket, the scanner gives a positive verdict 90% of the time.  
If the Wonka Bar does not contain a golden ticket, the scanner gives a 
negative verdict 90% of the time.  Calculate the probability of: 

 
  (i) the scanner giving a positive verdict when it scans a Wonka Bar. 
 

(ii) a Wonka Bar containing a golden ticket, given the scanner gives a 
positive verdict when it scans the bar. 

 
(c) In the game of extreme shuffle-cup there are 60 black cups, 20 white cups, 
40 green cups, and 6 balls.  Each of the 6 balls is placed randomly under a 
single cup, so that no cup covers more than one ball, as follows: 3 of the 6 
balls are placed randomly under black cups, 1 of the 6 balls is placed 
randomly under a white cup, and 2 of the 6 balls are placed randomly under 
green cups.  The cups are shuffled randomly.  Calculate the probability of: 

 
  (i) a cup containing a ball, given that it is a black cup. 
 
  (ii) a cup being green, given that it contains a ball. 
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Steve is an experienced extreme shuffle-cup player who responds either ‘yes’ 
or ‘no’ to your questions.  If a given cup contains a ball and you ask him 
whether it does he will answer ‘yes’ 80% of the time.  If a given cup does not 
contain a ball and you ask him whether it does he will answer ‘no’ 90% of the 
time.   
 
Calculate the probability of: 

 
(i) a cup containing a ball given that you ask Steve whether it does and 
he answers ‘yes’. 
(ii) the cup being white given that you ask Steve whether it contains a 
ball and he answers ‘no’. 
 
 

 
 
 
 

END OF PAPER 


