Kant Yearbook
1/2009

Teleology
Kant Yearbook
1/2009

Teleology

Edited by
Dietmar H. Heidemann (University of Luxembourg)

Editorial Board:
Henry E. Allison (University of California at Davis), Karl Ameriks (Notre Dame), Gordon Brittan (Montana State University), Klaus Düsing (Universität zu Köln), Daniel O. Dahlstrom (Boston University), Kristina Engelhard (Universität zu Köln), Brigitte Falkenburg (Universität Dortmund), Hannah Ginsborg (University of California at Berkeley), Michelle Grier (University of San Diego), Thomas Grundmann (Universität zu Köln), Paul Guyer (University of Pennsylvania), Robert Hanna (University of Colorado at Boulder), Georg Mohr (Universität Bremen), Angelica Nuzzo (Brooklyn College/CUNY), Robert Stern (Sheffield University), Dieter Sturma (Universität Bonn), Ken Westphal (University of Kent), Marcus Willaschek (Universität Frankfurt)
The *Kant Yearbook* is an international journal that publishes articles on the philosophy of Immanuel Kant. Each issue is dedicated to a specific topic. Each annual topic will be announced by way of a call for papers (the deadline for submissions to each annual volume is approx. May/June of the preceding year). The Editorial Board of the *Kant Yearbook* is composed of renowned international experts, and selects papers for publication through a double blind peer review process.

Online access for subscribers: http://dx.doi.org/10.1515/kantyb

© Printed on acid-free paper which falls within the guidelines of the ANSI to ensure permanence and durability.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

ISBN 978-3-11-019658-0 (Print)
ISBN 978-3-11-019667-2 (Online)
ISBN 978-3-11-019668-9 (Print + Online)

© Copyright 2009 by Walter de Gruyter GmbH & Co. KG, D-10785 Berlin.

All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Printed in Germany
Cover design: Martin Zech, Bremen
Printing and binding: AZ Druck und Datentechnik GmbH, Kempten
Preface

Over the last decade, academic research on Kant has grown to an extent that makes it almost impossible even for the well informed expert to orientate herself in a specific domain of his philosophy. Be it monographs, articles, textbooks, anthologies, text editions or translations, the numbers of publications have steadily risen in all areas concerned with Kant’s philosophy. This goes not only for European countries and, in particular, the United States, but equally for South America, especially Argentina and Brazil. The growing interest in Kant’s philosophy in countries like Russia or China, and Asia as a whole, is already beginning to add substantially to this development. The Kant Yearbook is a response to the international increase of the research on Kant’s philosophy. It is the Kant Yearbook’s intention to create a forum for the thematically focused and innovative discussion of special topics in Kantian philosophy on an international scale. For this reason, its preferred languages of publication are English and German. There already is, of course, a number of excellent journals dedicated to Kant such as the Kant-Studien, Studi Kantiani, or the Kantian Review. However, the Kant Yearbook is fundamentally distinct from these journals in that it publishes topic related annual volumes. Each annual topic will be announced by way of a call for papers. In order to ensure the scholarly quality of the contributions, the editorial board of the Kant Yearbook, composed of renowned international experts, will select papers for publication through a double blind peer review process. The format as an annual journal will thus allow the Kant Yearbook to react to current developments in research on Kant’s philosophy within a short period of time, and to initiate new research topics and directions. Ideally, each issue will represent the state of the art regarding its specific topic. The Kant Yearbook therefore equally welcomes historical and systematic articles, no matter from what philosophical school or orientation. The present first issue on Kant’s teleology seems to be a successful example of that strategy. Compared to the first and second Critiques this topic has traditionally been understudied. Nevertheless, recent historically as well as systematically orientated developments in this research area document a growing interest in the often neglected “Critique of Teleological Judgment”. The topic of the second issue of the Kant Yearbook in 2010 will be
“Metaphysics” followed by “Anthropology” and “Kant and Analytic Philosophy”.

I would like to thank the members of the editorial board who unhesitatingly accepted my invitation to take on the difficult task of reviewing submissions and selecting papers for the *Kant Yearbook*. I am also very grateful to my former colleagues, in particular to Chris Eliot, from the Department of Philosophy at Hofstra University (New York) for supporting me in starting the *Kant Yearbook*. I thank my new colleagues at the Department of Philosophy at the University of Luxembourg for the friendly welcome they have extended to the *Kant Yearbook*. Special thanks go to the publisher De Gruyter and its editor in chief, Dr. Gertrud Grünkorn, for taking on the risky project of starting a new journal. And last but not least, thanks go to Christoph Schirmer and Claudia Hill from De Gruyter for helping me with the editorial work.

Luxembourg, February 2009

Dietmar Heidemann
Contents

Claus Beisbart
Kant’s Characterization of Natural Ends .. 1

Angela Breitenbach
Teleology in Biology: A Kantian Perspective 31

Paul Guyer
Kant’s Teleological Conception of Philosophy and its
Development .. 57

Robert Hanna
Freedom, Teleology, and Rational Causation 99

Angelica Nuzzo
Kritik der Urteilskraft §§76 - 77: Reflective Judgment and the
Limits of Transcendental Philosophy .. 143

Suma Rajiva
Safely satisfying reason: The metaphysics of design in Kant’s
teleology .. 173

Eric Watkins
The Antinomy of Teleological Judgment 197

John Zammito
Kant’s Notion of Intrinsic Purposiveness in the Critique of
Judgment. A Review Essay (and an Inversion) of Zuckert’s 223

Wiebke Henning
An Annotated Bibliography to Kant’s Teleology 249

List of Contributors ... 267
Teleology in Biology: A Kantian Perspective

Angela Breitenbach

Abstract

One of the most widely debated issues in contemporary philosophy of biology is the problem of teleology. How are we to understand apparently teleological concepts, such as that of a “function”, given our conception of science as providing causal explanations for natural phenomena? In this paper, I reconsider this debate from a Kantian perspective. The crucial contribution of the Kantian account is to argue both that teleology plays an important heuristic role in the search for causal explanations of nature and that it is for us an inevitable analogical perspective on living beings. The Kantian perspective, I shall argue, is not only compatible with the modern life sciences but can advance the debate about teleology in biology precisely because it does not interpret teleology naturalistically.

Introduction

The biological sciences are special within the realm of the natural sciences. They employ concepts that have long been taboo in physics and chemistry. Biologists may speak, for example, of the functions of biological traits and of genetic programmes that control biological processes. They may ask what a particular trait of an organ is for, or what purpose it has for the functioning of the organism as a whole. Expressions such as these sound unmistakably teleological. We are familiar with these concepts from the description of our own actions. We speak of a person, for instance, as acting for a purpose, as designing an object to perform a certain function, or as creating a programme to carry out a particular task. In the realm of human activity, purposes, functions and programmes thus involve the intentions of an intelligent agent, intentions that the agent aims to realise by means of her activities in the world.

1 I would like to thank Nick Jardine, Tim Lewens, Onora O’Neill and an anonymous referee from the Kant Yearbook for helpful comments on earlier drafts of this paper.
What, however, do the same concepts mean in the context of biology? Do they, as in the case of human action, require the existence of an intelligent agent? A positive answer would be incompatible with our modern conception of the task of science as providing explanations for natural phenomena without thereby resorting to supernatural design or purpose. Can we, then, explain teleological concepts in biology as referring solely to mind independent features of nature? What seems so special about teleological descriptions is that the purpose or the end of a functional process or programme, although they may lie in the future, somehow determine what goes on in the present. And yet, would this conception of a final causation not contradict the assumption that causes must precede their effects? Would it not conflict with our conception of science as explaining all natural phenomena by reference to efficient causes? How, then, can we make sense of the phenomenon of teleology in the biological sciences?

The problem of how to understand the use of teleological concepts in the life sciences is one of the most widely and controversially debated problems in contemporary philosophy of biology. It is surprisingly closely related to Kant’s discussion of teleology and the purposiveness of nature. In this paper, I thus aim to cast some light on this modern debate by reconsidering it from a Kantian perspective. I shall start by surveying some of the recent approaches to the problem of teleology in biology (§1) and by investigating the epistemological status that these approaches attribute to teleological statements (§2). Commentators seem to disagree about the question whether teleological concepts can be explained in purely naturalistic terms or whether they entail analogical associations with intentional goal directedness. The Kantian conception of teleology, I shall show, is essentially analogical (§3). The crucial contribution of the Kantian account is to argue both that teleology plays an important heuristic role in the search for causal explanations of nature and, more fundamentally, that it is for us an inevitable analogical perspective on living beings. The Kantian approach to teleology thus introduces a focus that goes beyond any empirical investigation of nature. This is the focus on the very possibility of experiencing the living part of nature. By clarifying the relation between this Kantian account and empirical science (§4), I aim to show that the Kantian perspective is not only compatible with the modern life sciences, but that it can advance the debate about teleology in biology precisely because it does not interpret teleology naturalistically (§5).
1. Explaining Functions: Aetiology and Causal Roles

Most approaches to the problem of teleology in contemporary philosophy of biology fall roughly into one of two categories. While aetiological accounts explain the function of a trait by reference to the way the trait evolved, causal role theories argue that a biological trait has a function if it contributes to the working of a more complex biological system. Both approaches seem to be motivated by certain rather plausible intuitions that lie at the basis of our teleological descriptions of nature.

The aetiological account of teleological statements in biology is a backward looking analysis. It is the particular developmental history of the trait of an organ which is taken to justify the functional description of that organ. Larry Wright, one of the chief proponents of the aetiological account, analyses functional statements in biology in the following way:²

The function of \(X \) is \(Z \) means,

(a) \(X \) is there because it does \(Z \),

(b) \(Z \) is a consequence (or result) of \(X \)'s being there.³

The second condition (b) states that what is called the function \(Z \) is a consequence of the trait or behaviour of \(X \). The first condition (a), moreover, specifies that \(Z \) cannot just be any consequence of \(X \). Rather, (a) takes account of the claim that \(X \)'s having or doing \(Z \) is, in turn, a reason for \(X \)'s existence itself. A trait \(X \) is considered as having the function \(Z \) if it exists precisely because it does, or brings about, \(Z \).

Condition (a) thus takes account of the claim that the function of \(X \) is \(Z \) purely in terms of efficient causes. Teleological explanations differ from ordinary causal explanations, however, insofar as they are interested not merely in the originating causes of a particular trait but, more specifically, in the consequences of the trait which have an effect on the originating causes of the trait itself. As specified by condition (a), the relevant consequences of the functional trait \(X \) are those that feed back into the efficient causes for \(X \).⁴ The capacity of pumping blood

² Wright (1973) and (1976).
³ Wright (1973, 161).
⁴ Wright here takes up the notion of “feedback” that played an important role in the cybernetic accounts of the first half of the 20th century. Important exponents of this area of research are, e.g., Rosenblueth, Wiener and Bigelow (1943), E. S. Russell (1945), Wiener (1948), Sommerhoff (1950), and von Bertalanffy (1952).
can thus be called a function of the heart, on Wright’s account, because the following two conditions hold: the capacity to pump blood is a consequence of the presence of the heart (b), and the fact that the heart has the capacity to pump blood is the efficient cause of the existence of the heart itself (a).

And yet, how can the presence of the heart be the effect of an activity which is first made possible by the existence of the heart itself? Would the heart not be said to cause itself? Wright’s account, it seems, is most plausibly understood when supplemented by a type-token distinction.\footnote{Cf. Allen, Bekoff and Lauder (1998, 6).} Understood as a trait type, Z can then in condition (a) be taken to be among the efficient causes of X. The presence of Z in condition (b), however, can be considered to be a consequence of X if it is understood as a token of the trait type that was among the causes of X. Although the presence of the heart is the efficient cause of certain kinds of pumping activity, it was the fact that the heart had the capacity for the type of activity of pumping blood that was among the efficient causes of the existence of the heart in the first place.

Given this clarification, we can see how Wright’s analysis was developed further by invoking the theory of evolution by natural selection. Inspired by evolutionary theory, Karen Neander interprets condition (a) as saying that X is there because its ancestors did Z, and because they were favoured by evolution for doing Z.\footnote{Cf. Neander (1991a and 1991b).} Similarly, Ruth Millikan calls an aspect of a biological trait its “proper function” if it positively influenced the natural selection of that trait.\footnote{Millikan (1984, 17). Cf. also ibid. (1989).} The dark pigment of the wings of the peppered moth, for instance, can be said to have the function of providing camouflage because, due to providing camouflage, moths with darker wings were favoured by natural selection over moths with lighter wings. According to this aetiological reading, we can thus understand the function of a biological trait in terms of the trait’s selection history.

Despite its widespread acceptance, however, the aetiological analysis faces a number of difficulties.\footnote{Buller (1999, 1 ff) speaks of the aetiological account as the “core consensus” on the problem of teleology in biology, while Allen and Bekoff (1995, 612) characterise it as the “standard line” in the philosophy of biology.} On the one hand, it seems plausible that mutations of certain organisms could contribute to the working of the
organism from the very moment of their emergence. Pace the aetiological analysis, they could be said to perform a function even if they had not yet undergone a selection history. Thus, reference to selection history does not seem necessary for the ascription of functions to certain traits. On the other hand, it is also possible that the trait of an organ once had a positive effect on the natural selection of the organ although, today, it no longer exerts that effect. The human appendix, for example, was once selected for its capacity to produce enzymes that played an important role in the digestion of the vegetable food of our herbivore ancestors. It thus seems plausible to say that the appendix once had, but now no longer has, a function. Having the right selection history, therefore, does not appear to be sufficient for the functionality of a biological trait either.

Both parts of this objection seem to be based on the conviction that the functionality of an organ is connected not only with its evolutionary history but also with the role that it plays within the organism as a whole. Thus, it may be argued that it is not the history of a trait but the causal role that it performs in some complex biological system that determines whether the trait has a function or not. Rather than looking back at the way the trait developed, this approach could be described as forward looking, as characterising a function in terms of the contribution it makes to a corresponding system such as an organism.

The systems theoretic approach is primarily associated with Robert Cummins’ analysis of functions as causal roles in complex systems. To speak of the function of a biological trait is, according to Cummins, to

9 A number of authors have introduced, in this context, a thought experiment involving “instant organisms”. Regarding their structural and material properties, we are supposed to think of these creatures as exactly identical to ordinary organisms. They only differ from ordinary organisms insofar as they are not the product of an evolutionary history but have emerged in an instance. Although, for example, the heart of an instant organism would perform the same activity of pumping blood as the heart of an ordinary organism, on the aetiological account we could not say that pumping blood was a function of the instant heart. Cf. for example Neander’s “instant lions” (1991b, 179), and McLaughlin’s “swamp mule” (2001, 89).

10 To avoid this problem of the aetiological account in dealing with rudimentary organs, some authors have proposed to restrict the relevant selection history of a trait to its most recent history. Cf. Godfrey Smith (1994). Although this proposal may be able to limit the criticism raised here it does not seem to avoid the difficulty in principle.

11 Cummins (1975).
ascribe to the trait a capacity in which we are interested because of its contribution to a more complex capacity \(P \) of a containing system \(S \). Talk of functions, on Cummins’ account, is thus always implicitly dependent on an “analytical context”.\(^\text{12}\) It is dependent on our interest in analysing the capacity \(P \) of a biological system \(S \) as divisible into a number of other capacities of parts of, or processes within, \(S \). By thus focusing on the role that a biological trait plays within a more complex system, Cummins’ analysis has the advantage of avoiding the difficulties of the aetiological account. Thus, traits of an organism that, in the past, were selected because of certain capacities but that, today, no longer have these capacities should not be considered as functional. Other traits that are not the result of an evolutionary history but that play an important role in a complex system can, by contrast, be considered as having a function.

It may be objected, however, that Cummins’ analysis does not account for the apparent normativity of functional claims. When we say that the function of the heart is to pump blood, we seem to imply that the heart would not be functioning properly if it did not pump blood. Cummins’ analysis, however, is interested solely in the question whether the component of a system can be described as contributing in a particular way to the working of the system on the whole, but not whether the contribution of this component occurs contingently or whether we could say that the component should indeed have had that effect. On Cummins’ account, it seems, we cannot distinguish between the contingent and the non-contingent contributions that a trait of an organism makes to the working of the organism on the whole.

With his “naïve fitness account” Tim Lewens presents a modified account of Cummins’ analysis that aims to overcome this difficulty:

The function of a trait \(t \) is \(F \) iff traits of type \(T \), of which \(t \) is a token, make a significant contribution to fitness by performing \(F \).\(^\text{13}\)

According to Lewens, too, the function of a trait is construed as its contribution to the capacity of a corresponding system. This capacity is defined as the organism’s fitness. For organic systems this means that the relevant capacity of a system is its ability to survive and reproduce. Lewens adds, furthermore, that we can only attribute a function to a trait if the trait is an example of a homology type. Two traits thus be

\(^{12}\) Ibid., 190.
\(^{13}\) Lewens (2004, 102).
long to one and the same type if they have developed out of the same trait in a common ancestor.

With this specification, Lewens’ interpretation can avoid the difficulties of Cummins’ causal role analysis. Lewens can distinguish *typical* from *abnormal* contributions of a trait to the corresponding system by comparing the trait with other instances of its *type*. And he can make a claim about how the trait of a system *should* commonly contribute to the working of the system on the whole. Moreover, by restricting the relevant capacity of the containing system to its fitness, Lewens’ account puts a limit to the function attributions that are possible on Cummins’ account. Thus, in biology, a trait has a function only if it plays a role for the ability of the system to survive and reproduce.

2. The Epistemology of Functions: Naturalisation or Analogy?

The presented theories offer two very different approaches to the problem of teleology in biology. How, then, should we decide between these competing interpretations of functional statements? Before thinking further about an answer to this question, it will be fruitful to focus, first, on what these two types of interpretation have in common. For it seems that despite their differences, both the aetiological and the causal role accounts share a number of important assumptions.\(^{14}\) They agree that teleological statements in biology assume neither the existence of intention or design, nor that of final causes. Instead, they argue that teleological concepts can be rendered in completely non-teleological terms. When biologists speak of natural processes by means of teleological expressions, these accounts imply, they thus refer to processes that are ultimately explicable in terms of efficient causes. The aim of proponents of both the aetiological and the systems theoretic analysis is thus the *naturalisation* of teleology.\(^{15}\)

The presented accounts insist that, in principle, teleological claims could be reduced to non-teleological statements. And yet, they never

\(^{14}\) A number of authors have also proposed pluralistic accounts that aim to combine the aetiology of functions with their causal roles in a system. Cf. Millikan (1989), Griffiths (1993), Godfrey Smith (1994) and also McLaughlin (2001).

\(^{15}\) This seems true both for those authors who aim to analyse how teleological language is in fact used by biologists and those who are engaged in the project of giving a *theoretical definition* of teleological concepts.
theless reject the aim of replacing all teleological with non teleological expressions. Although functional concepts can be explained in non teleological terms, it is argued, teleological statements nevertheless have a use that would be lost if they were translated into non teleological vocabulary. Most proponents of both aetiological and systems theoretic approaches therefore give some argument explaining the nevertheless apparent difference in meaning between teleological and non teleological statements. Wright, for example, speaks of the different focus of teleological and non teleological explanations. While causal statements are concerned with the originating causes of a particular trait, the emphasis of teleological statements lies rather on the consequences of that trait. Similarly, Cummins argues that the focus of function ascriptions lies on a specific type of causal role that the trait under investigation contributes to a corresponding complex system. Both on the aetiological and the causal role account, teleological statements thus refer to natural causal processes, yet have implications that differ from those of statements solely about efficient causes.

Even if it is true, however, that the translation of teleological into causal explanations cannot account for the particular focus of teleological statements it seems that teleological claims could nevertheless have been replaced by other, non teleological, expressions. Even if, in other words, teleological statements refer to a particular type of causal process, could we not distinguish this type by a particular form of causal statement? Why, then, do we still find expressions in biology that, on first consideration, seem to imply intentional purposiveness? Why are teleological expressions so persistent in biological research? And why have they not been replaced by more neutral concepts?

According to Wright, teleological concepts in science are “dead anthropomorphic metaphors”.16 They were introduced into the consideration of nature by a metaphorical extension of concepts known from human action. It was only as these metaphors “died”, Wright argues, that teleological concepts took on a literal meaning. But why, one may ask, were these metaphors introduced in the first place? Why were they used in the biological but not in any of the other natural sciences? Cummins speaks of the adequacy of teleology for certain systems: teleological explanations are adequate for some (organic) systems but not for other (inorganic) systems. But what is it that makes teleology ade

16 Wright (1976, 21). Sommerhoff makes a similar proposal in the context of his analytical biology (1950, 67 f).
quate for the description of some but not of other parts of nature? These questions suggest that, perhaps, the project of naturalising teleology is not ultimately sufficient as an answer to the problem of teleology in biology. For the project seems to leave open questions about the specific character of biology which appears to make the use of teleological concepts so adequate. Perhaps, then, an analysis of the use of teleological terms in biology should clarify not only what teleological concepts stand for but also why they should be employed in the biological sciences at all.

What, then, would an alternative approach to the problem of teleology in biology look like? Rather than focusing purely on the naturalisation of teleological expressions, other authors have referred to the analogical status of these concepts. According to Lewens’ “naive fitness account”, for example, a teleological explanation is adequate only for those natural systems for which the analogy with an artefact seems applicable. Although teleological formulations in biology can be explained in non teleological terms, Lewens argues, these teleological statements nevertheless imply an analogy with a purposively designed object. Similarly, Michael Ruse, a defender of the aetiological analysis of function statements, argues that we explain organic nature in teleological terms precisely because it appears to us as if organisms were produced according to purposes:

Organisms seem as if designed; [...] . It is for this reason that teleological thought is appropriate in the biological sciences; and because nonorganisms do not seem as if designed, teleological thought is inappropriate in the non biological, physical sciences.17

According to this analogical conception, we describe nature teleologically because it appears to us as if it were planned and created by an intelligent designer. The functional description of nature is really an anthropomorphic projection onto nature. Teleological concepts have a metaphorical meaning: they read into nature ideas that we are familiar with from the context of human activity. Despite their metaphorical status, however, Ruse claims that the use of metaphorical concepts is nevertheless fruitful for biological research. It should not be abolished, therefore, but employed as a heuristic tool.18

This second type of approach to the epistemological status of teleological expressions in biology thus rejects the position that any teleolog

ical statement can be reduced to a non teleological claim. More fundamentally, it questions the assumption that teleological statements refer solely to causal processes in nature. Functions, purposes, or programmes, according to this second position, do not really exist in nature but only in the context of our metaphorical conception of nature. The widespread use of teleology in the life sciences is thus explained by the claim that *nature itself seems to us as if it is designed*.

In raising the question why it is that biologists use teleological language, this second, analogical, account seems to me to be engaged with the original problem of teleology in biology in a much more promising way than was the first, naturalistic, approach. And yet, Ruse’s account remains rather general and leaves important questions unanswered. For we may ask further why, and in what way, nature seems design like to us. Ruse provides a survey of the development of biological theories, pre- and post-Darwinian. He shows that all of these theories regarded nature as if it were designed. Yet, Ruse does not explain what is so special about our view of organic nature, and hence about our biological theories, that requires the assumption of design in nature. Similarly, Lewens answers the question for which systems his account of functions is relevant by simply claiming that “[t]alk of functions, problems, and purposes appears in contexts where artefact thinking is both practical and psychologically attractive.”

But what is it that makes the artefact analogy *practical and psychologically attractive* in one but not in another situation? Again, Lewens does not say much to explain what it is that makes the artefact analogy, and hence the use of teleological vocabulary, adequate in the case of biology.

Both Ruse and Lewens remain rather vague, too, about the dispensability of teleological concepts in biology. According to both, it at least *seems* as if the subject matter of biology requires the use of teleological concepts. As a mere metaphor, or methodological tool, however, it is not clear why teleology has persisted in biology for so long. It is not obvious, for instance, how to understand the combination of Ruse’s claims that teleology can “in principle […] be eliminated”, and yet, that with

19 Ratcliffe (2000), by contrast, attempts an explanation of this requirement in arguing that, as human beings with the particular cognitive make up that we have, we need teleological concepts for our understanding of the natural world. Ratcliffe does not give any detailed explanation, however, of how teleological concepts are supposed to structure our interaction with the world.

20 Lewens (2004, 122 ff.).
out it, “we could not say very much”. More thought, it therefore seems, needs to go into the analogical nature of teleology in order for this second account of the epistemological status of teleology to be convincing. In the following, I shall be concerned with such an analogical approach in more detail. I believe that we can find a useful basis for it in Kant’s teleological conception of nature.

3. A Kantian Account of Natural Teleology

Kant develops his teleological conception of nature mainly in the second part of his *Critique of Judgment*, the *Critique of Teleological Judgment*. There, he argues that our experience of organic nature is essentially characterised in two ways. It is distinguished by a certain kind of organisation of the parts within the whole and by a reciprocal interdependence between the individual parts. If we consider, for example, “the structure of a bird, the hollowness of its bones, the placement of the wings for movement and of its tail for steering, etc.” we think of the parts of the bird as determined by their function within the organism as a whole. We can only understand the bird’s eye by reference to the role that it plays for the visual capacity of the bird: we regard the eye as that organ which enables the bird to see. Moreover, in their directedness towards the existence and survival of the whole, the parts of an organism seem to influence, and cause, each other. While the movement of the bird’s wings is dependent on the nutrition it receives through the functioning of the digestive organs, these organs, in turn, depend on the circulation of blood in the bird’s body. The generation and growth of the organism as a whole, the proper working of its parts and the regeneration of damaged organs display not only a particular organisation but also a capacity for what Kant describes as *self-organisation*. It is this two-fold characteristic of our experience of organisms, as both organised and self-organising that, according to Kant, makes it necessary for us to characterise them in teleological terms.

22 References to Kant’s works use the pagination of the Akademie edition ‘(1900 ff.) (= AA) with the exception of the *Critique of Pure Reason* (CPR) which is referred to by citing the pagination of the original A and B versions.
23 Translations of the *Critique of Judgment* (CJ) are taken from Kant (2000).
23 CJ, AA V 360.
Why, then, is it impossible, as Kant claims, to explain these particularly organic characteristics in non-teleological, mechanical terms? And how can this be squared with his claim in the *Critique of Pure Reason* that anything we can in principle experience must be caused? According to Kant, mechanical laws explain natural processes in terms of the way in which parts of matter act on one another by means of their forces of attraction and repulsion. Mechanical laws thus specify the necessary connection between the effect and its cause as a relation between parts of matter. In particular, they explain the way that a material complex is caused by reference to the interactions between the forces of its material parts and the way these parts combine into a material whole.

For our understanding of organisms this has important implications. For to explain a complex material thing by reference to the interaction of its material parts seems to be at odds with the idea that the parts themselves are there for the complex whole, that they have a function within the whole and that their role can only be understood in the context of the whole. To think of something as an organism is precisely not to understand it as a complex of parts, where the parts could exist independently of the whole. As Kant says, “nature, considered as a mere mechanism, could have formed itself in a thousand different ways without hitting precisely upon the unity” essential to the particular character of an organism. According to mechanical laws, the organisation of a living being would thus have to be considered as a mere coincidence. It could not be regarded as a unity of parts that are determined precisely by their contribution to the whole. Thus, by reference to mechanical laws we simply cannot make sense of the particular organic dependency relation: we cannot grasp what it means to say that a material whole should determine the form and working of its material components.

If, then, we cannot explain organisms mechanically, how can we nevertheless make sense of their specific and apparently purposive character? What, in particular, does it mean to think of the parts of an organism as contributing to, or as dependent on, the whole? According to Kant, it is clear that we cannot know of any purposive activity in nature in the literal sense. Rather, the concept of a purpose is merely read into

25 Kant elaborates on this conception of mechanism in his *Metaphysical Foundations of Natural Sciences* (AA IV 465 ff.).
26 *CJ*, AA V 360.
nature: we seem to consider organisms in nature as if they were purposively organised and striving. Thus, teleological statements seem to project onto nature a property that we are acquainted with through our own purposive activity. We are familiar with the idea that a part should be there for the sake of the whole, for instance, from the purposive work of an artisan. The artisan produces her artefact according to an idea or a plan. Through her actions, she realises her idea by ordering certain materials in such a way that they combine to make up the intended product. In this sense, the individual components of an artefact are there for the artefact as a whole because the artist intended them to form part of the artefact. And in a similar way, it now seems, we can also make sense of the parts of an organism as being there for, and as having a function within, the organism as a whole if we think of the organism as the intended purpose of an intelligent designer.

The artefact analogy that both Ruse and Lewens refer to thus already plays a role in Kant’s teleological conception of nature. And yet, this analogy between nature and the product of intelligent design only accounts for Kant’s first characterisation of organisms as displaying purposive organisation. It does not account for their apparent self-organisation, that is, for the way that organisms bring about themselves. While a product of art is characterised as “the product of a rational cause distinct from the matter”, an organism, by contrast, cannot be conceived as the product of an external cause. Rather than contributing to the purpose of an external intelligence, the parts of an organism seem to strive towards a purpose internal to the organism itself, that is, its own existence and survival. Kant therefore argues that the comparison with the purpose of an artisan “says far too little about [organic] nature and its capacity”.

On Kant’s account, the self-organising and striving character of organisms should not therefore be illustrated by the artefact analogy but is more adequately understood on the model of our own rational and purposive activity itself. This, I think, is the idea behind Kant’s claim that,

27 Cf. AA V 373.
28 Cf. AA V 374.
29 This important aspect of Kant’s teleological conception of living nature has not, I believe, received the attention that it deserves. Many of the seminal treatments of Kant’s teleological conception of nature, such as those presented by McFarland (1970), Löw (1980) and, to some extent, also McLaughlin (1990), ignore this aspect altogether. McFarland, for instance, argues that Kant “is [...] still in the grip of the design designer analogy to the extent that he believes that we
although we cannot understand the idea of a natural purpose, we can at least think of it “in accordance with a remote analogy with our own causality in accordance with ends”.30 We thus reflect about nature by means of the way we usually think about our own rational purposive actions. In order to grasp the particular self-organisation of an organism, and hence the directedness of the organism towards its own existence and development, we consider it by analogy with the capacity of reason to set itself ends and to direct its activity towards these ends. In experiencing something as organic, we thus transfer the idea of the purposive activity of our own reason onto nature.

If our teleological considerations of nature are based on an analogy, however, we must conclude that we can make no assertions about the existence or absence of purposes in nature. Our very concept of a natural purpose is an idea that can never be proved to have a real application in nature. Kant’s position entails that we can merely make statements about our teleological reflections about nature, but not about the teleological character of nature itself. According to Kant, our teleological view of nature is thus of a different kind from any mechanistic conception. The former, as opposed to the latter, is no objective or categorical knowledge but a subjective and analogical mode of thinking about nature.

What, then, can we learn from Kant’s discussion of the teleological conception of nature? I believe that Kant’s analysis gives flesh to Ruse’s rather general claim that our teleological conception of nature is merely analogical. Moreover, in claiming that our teleological conception of nature is based on an analogy, Kant does not seem to be concerned merely with explicitly teleological statements such as “the function of X is Z”. Rather, Kant seems to be interested in a much more general aspect of our teleological conception of nature. Thus, on Kant’s account, to consider something in nature as organic is already to view it teleologically. Merely to understand, for instance, a tree as an organic unit is to view its parts as parts of a systematic whole and as contributing to the existence and survival of that whole. Similarly, to understand an eye as an eye is already to view it as part of a larger whole on which the eye depends for its existence and with reference to which it has the function of enabling vision. Kant’s discussion shows that our very concep-
of living nature inevitably presupposes teleological concepts. In this sense, the very possibility of organisms can only be grasped in teleological terms. According to the Kantian analysis, Ruse’s statement that organic nature, for us, is design like can then be understood as the claim that we can conceive of something as organic only by considering it teleologically.

This general aspect of teleology with which the Kantian account is concerned can be clarified by distinguishing between two levels of our teleological conception of nature. The general teleological conception of nature that Kant focuses on may be described as the fundamental level of our experience and understanding of organic nature as such. At this level, a teleological view seems inevitable. We may distinguish from this a second level on which parts of organic nature can explicitly be described in teleological terms. It is this second level that first seemed to prompt the question of how to make sense of teleology in biology. And it is this second level, too, with which the contributions to the debate in current philosophy of biology seem to be exclusively concerned. When authors such as Wright and Cummins, on the one hand, but also Ruse and Lewens, on the other, discuss the problem of teleology in biology they are thus dealing with the problem of how we are to understand the use of explicitly teleological expressions such as “function” or “purpose”. They are not concerned with the more fundamental and implicit teleological perspective that, according to the Kantian approach, is necessarily involved in our consideration of organisms.

The insight that the Kantian account may provide, I would there fore like to argue, is that the use in biology of explicitly teleological concepts is based on a more general teleological perspective on nature. And it is, I believe, the inevitability of this fundamental teleological viewpoint that can explain the use of teleological expressions at the secondary level. Thus, it is common to talk of purposes, functions and programmes in biology but not in physics and chemistry. The reason is that biology, unlike either physics or chemistry, is concerned with organic nature and that, if Kant is right, organic nature must be considered teleologically. It therefore seems natural to use an explicitly teleological language to talk about things the conception of which implicitly assumes a teleological perspective. And again, this analysis of our teleological view of nature elucidates a statement put forward by Ruse: “Organisms seem as if designed” (on the fundamental level of experience). “It is for
this reason that teleological thought is appropriate in the biological sciences” (on the concrete level of biological research).31

With this Kantian interpretation of teleology in tow, we may now come back to the question of how to decide between the two competing explanations of teleology discussed in the first section: should teleological concepts in biology be understood as referring to the evolutionary history of the trait of an organism, or should they rather be construed in terms of the causal role that the trait plays in a biological system? On the Kantian account, this question refers to the secondary level of the heuristic use of teleological concepts. On this level, speaking of functions, purposes and programmes in nature can be understood as making heuristic assumptions for the study of the causal laws of nature. It follows, therefore, that a teleological consideration of nature is legitimate if it is useful for the search of causal explanations. Employing teleological language is justified if it helps us with our causal investigation of nature. If, then, we understand the use of teleological language in the biological sciences as a heuristic means based on analogy, we do not need to decide between the aetiological and the systems theoretic approach. Both analyses can be accepted on the condition that both figure as helpful heuristic devices for the study of nature. As long as biologists are interested in the investigation of the selection history of a particular organic trait as well as in the causal role that the trait plays in a complex organic system teleological vocabulary may be used in both the aetiological and the systems theoretic sense.

According to the Kantian approach, we may thus understand the use of explicitly teleological language in the life sciences as a heuristic means of structuring projects and formulating questions in biology. Teleological concepts can guide our biological research into the causal processes of nature without, however, being entirely reducible to causal statements. While providing a useful means for the study of nature, teleological concepts are ultimately based on a more general teleological understanding of nature. And it is this understanding which entails an analogy with our own rational purposive activity.

4. Kantian Teleology, Evolution and Systems Theory

The Kantian account clarifies why we might want to aim for more than a naturalisation of teleology as an explanation of teleological concepts in biology. According to the Kantian approach, concepts such as “function” or “programme” are based on a general teleological understanding of nature which, in turn, presupposes an analogy with our own capacity to act for ends. It is the necessity of this fundamental analogy, however, which may now be questioned. For it could be argued that even the general teleological perspective that, on Kant’s account, makes it possible for us to consider something as organic at all is explicable by reference to the causal processes in nature. In particular, it could be claimed that our very understanding of organisms as apparently teleological systems can be understood in terms of evolutionary theory. Of course Kant could not have known about the theory that Darwin published in the *Origin of Species* half a century after Kant’s death. And it is precisely this ignorance, it is claimed for example by Ernst Mayr, that led Kant to believe that the explanation of organic nature was impossible in principle.\(^{32}\) The essential character of living beings, Mayr argues, is explicable not in purely mechanistic terms but by means of a historical analysis of their evolutionary development.

Thus, the first aspect of Kant’s characterisation of organisms, the apparently purposive arrangement of the parts of an organism within the organism as a whole, could be explained as an “adaptation” that is the result of variation and natural selection over a long period of time. Evolution produces organisms that are well adapted to their environment and that, therefore, seem as if they were purposively arranged in order to survive in their environment. Yet, natural selection, Dawkins’ “blind watchmaker”, does not need to be understood in teleological terms. It is blind “because it does not see ahead, does not plan consequences, has no purpose in view”.\(^{33}\) Furthermore, the second aspect of Kant’s characterisation of organisms, the apparent directedness of an organism towards its own existence and survival and the way in which the organism develops through the mutual interaction of its parts, can be explained by reference to the historically evolved genetic programme of the organism. And since the concept of the genetic programme is itself explicable in purely physical terms there is no need to

\(^{33}\) Dawkins (1988, 21).
resort to a teleological perspective in order to understand the organic in nature.

Mayr’s objection differs from the aetiological analysis of teleological terms. For the objection does not resort to the evolutionary theory in order to explain the meaning of explicitly teleological terms, as proposed by Neander. Nor does the present criticism refer to the concept of evolution by natural selection as a basis for the definition of teleology, as argued by Millikan. The theory of evolution is rather brought into play in order to give an a posteriori explanation of the apparently teleological character of organisms. According to Mayr, the seemingly teleological character of living beings is thus explicable in naturalistic terms by means of the Darwinian theory of evolution and the results of modern genetics:

Darwin removed the roadblock of design, and modern genetics introduced the concept of the genetic programme. Between these two major advances the problem of teleology has now acquired an entirely new face. 34

Modern evolutionary biology can, on this view, give a naturalistic account of the characteristics that, according to the Kantian approach, were described by means of the teleological analogy. Kant’s teleological perspective that was claimed to be inevitable, could thus be considered as a merely useful or heuristic, but not necessary or irreducible, view of nature. Ruse’s statement according to which we explain organisms teleologically because they seem as if designed could thus be explained further by arguing that organisms seem as if designed because they have evolved through variation and natural selection.

Does this show, then, that Darwin (together with Watson and Crick) can be regarded as the Newton of the blade of grass which Kant thought to be impossible in principle? 35 Can the teleological conception of organisms, pace Kant, be naturalised after all? In order to answer this question, we need to distinguish very carefully between two conceptions of the teleology of nature. For, on the one hand, it seems correct that Darwin’s theory refutes a metaphysically interpreted concept of teleology according to which the world is construed as a product of an intelligent and purposively acting cause. Evolutionary theory thus proves unwarranted the idea of a god who provides the organism with the organs necessary for its survival and who thereby adapts the organism to its

34 Mayr (1974, 113).
35 Cf. CJ, AA V 400.
environment. On the other hand, it is less clear that the theory of evolution refutes the necessity of an epistemologically or conceptually interpreted function of teleology. For evolutionary theory does not seem to be concerned, as Kant is, with the question of how we should understand the very concept of an organism. It does not seem to address the issue of how to conceive of the apparently purposive organisation and goal directedness of living beings. Rather, as Georg Toepfer has pointed out, it seems that in order to comprehend what evolution consists in we must already know what an organism is. Yet, if the theory of evolution presupposes an answer to the question of living beings it cannot replace the teleological conception of organisms proposed on the Kantian account.

It could be criticised, however, that although Darwin himself did not know how life emerged or how the first organisms originated, latest results in genetics and molecular biology have made great advances in this respect. While the theory of evolution by natural selection could be employed in order to naturalise the concept of the adaptation of an organism to its surrounding, the questions of how life first originated on earth and how individual organisms developed in such an apparently goal directed manner could be explained further by reference to developments at the molecular and genetic level. The theory of evolution, it could thus be argued, provides a naturalisation of the apparently teleological concept of an organism only in combination with molecular biology and genetics.

And yet, even if it is possible to explain the organisation and development of organisms in purely naturalistic terms, it seems that we never theless first have to identify the organism by distinguishing it as a natural unity from its surroundings. We thus first of all need to identify something as a living individual before we can investigate its causes and its history. But it seems to be precisely this identification which is made possible by the teleological perspective analysed on the Kantian account but not by the evolutionary explanation of the apparently teleological character of organisms. Reference to the theory of evolution, an essentially empirical theory, thus always seems to remain on the level of con

36 Toepfer (2004, 311 ff.).
37 This discussion has nothing to do, of course, with the historical question whether Kant should be read as a forerunner of Darwin. Haeckel (1889, 89 ff.) counted especially the early Kant as one of Darwin’s predecessors. A refutation of this view is developed by Lovejoy (1959).
crete empirical explanations. Evolutionary explanations can clarify which natural processes brought about the existence of a particular thing that we experience as a purposively striving organism. Evolutionary explanations cannot, however, say anything about the epistemological reasons that enable us to pick out something as a purposively organised unity in the first place. It is these latter reasons, however, with which the Kantian conception of teleology is concerned.

One might object at this point that rather than explaining the teleological appearance of living beings in evolutionary terms, we could naturalise our teleological understanding of organisms by reference to the particular structures that define such apparently purposive systems. What, on the Kantian theory, was described as an analogical account of nature could thus be explained by means of the actual causal roles that figure in organic systems. This is the position defended by Toepfer. He agrees with Cummins that the function of a trait is to be construed in terms of its causal roles in a corresponding system. His proposal differs from the causal role accounts discussed in Section 1, however, insofar as it does not regard the ascription of functions or purposes as an explanation of a particular natural trait but rather as the identification of certain natural systems. In contrast with the systems theoretic accounts discussed at the beginning of this paper, the primary task of teleology lies, on Toepfer’s account, in the identification of a particular class of objects. Teleology, he claims, does not explain the working or development of organic nature but offers a description of those systematic connections between natural processes that we regard as teleological. Only by clarifying the inner structure of certain objects, he argues, is it possible to understand something as a teleological system at all. The identification of organisms is thus based, according to this approach, on the causal interdependence of the various parts of an organic system and does not require the Kantian analogy with our own rational capacity. We can thus explain Ruse’s claim that organisms seem to us as if they were designed on the grounds that they display a particular structure defined by what Toepfer calls circular causal processes.

38 Toepfer (2004, 320 ff.).
39 This “inner structure” of an organic system may be taken to refer to the way in which different parts of an organism influence and cause each other as well as to the way in which external material is incorporated into the organism, enabling growth and the regeneration of damaged parts. Moreover, the particular causal structure of organisms may also be taken to include the way in which they pro
Can we conclude, then, that even if it is not the theory of evolution, it is the systems theoretic approach that can explain away the necessity of an analogical understanding of teleology? On the one hand it seems correct that the systems theoretic approach can explain the causal structures of the natural objects that we experience as organic beings. On the other hand, however, our experience of organisms seems to entail more than the experience of causal structures. Thus, the systems theoretic interpretation may elucidate the way in which the individual parts of an organism depend on, and causally influence, each other. And yet, the approach does not seem to account for the apparent striving and directedness which we associate with those characteristics that distinguish a living organism from a dead object. It is not obvious, therefore, that the description of empirically cognisable causal connections exhaustively presents the conditions for our identification of organisms.

What seems to distinguish Toepfer’s account from the Kantian approach is once more that on the former, the systems theoretic description of nature is presented as on the same epistemological level as the scientific study of circular causal relations. The investigation of the causal roles that a particular trait of an organ contributes to the working of the corresponding organic system is, at the same time, an investigation into the conditions that make something an organism at all. On the Kantian account, however, the fundamental teleological experience of organic nature is distinguished from the investigation and description of the causal structures of natural objects. According to Kant, the teleological identification of organisms in terms of an interpretative reflection first makes possible the investigation of causal processes as processes that go on within an organism. And insofar as the former is a condition of the latter, the two occupy a different epistemological status. The naturalistic approach to the systematic and organisational aspects of organic nature does not therefore seem to prove redundant the teleological analogy proposed on the Kantian account. The Kantian analogical approach to teleology introduces a focus that is not captured by any empirical investigation of nature. It is the focus on the very conceivability and possibility of the living in nature. In this sense, we can understand Hannah duce offspring—either on their own or with a mate. The “inner structure” may then be understood to refer to that of both parent(s) and offspring. Toepfer’s proposal could thus also be read to account for the definition of life that relies on the processes of metabolism and the reproduction of organisms. Yet, even if it is understood in this sense, it seems that the objections discussed below still apply.
Ginsborg’s claim that evolutionary theory (and, I would add, systems theory) “would offer an empirical answer to what is, in effect, a conceptual problem”. 40

5. Kantian Teleology in Biology: Some Conclusions

The Kantian approach suggests, then, that all attempts to give a causal explanation of teleological concepts in the biological sciences should only ever be understood as secondary explanations of something that is already conceived of according to a teleological analogy. Teleological concepts in biology, on the Kantian account, thus have a twofold function. On the one hand, they are heuristic tools for the discovery of naturalistic causal explanations. On the other hand, however, they cannot be reduced to these purely naturalistic explanations because they are based on a more general teleological understanding of nature by analogy with our own purposive activity. In order to understand nature as alive we thus always have to judge it teleologically.

What, then, does this understanding of teleological concepts mean for the biologist? Should she go on using teleological concepts as a helpful heuristic tool? And in what sense are the teleological concepts of the Kantian analogical account compatible with our conception of the biological sciences? The Kantian account, it seems, is compatible, and hence can allow for, an analysis of the organism’s workings in terms of its inorganic material parts. The Kantian account can allow for this kind of explanation insofar as it would be an explanation of the material processes that go on within the organism. The account must reject such a mechanical explanation, however, as an explanation of the essential character of the organism as a living being. For, as we have seen, the experience of organisms is characterised in a way that cannot be explained purely by reference to mechanical laws. The teleological view thus implies that there is something about our ordinary experience of empirical nature which falls outside the realm of the scientifically explainable. It is this particular character of living nature which we cannot explain, but can only elucidate by means of analogy. We may thus think of these two conceptions of nature, the causal mechanical and the teleological, as two different stories about, or perspectives on, one and the same object. Although the teleological conception seems inevitable

for the consideration of organic nature, a non-teleological, mechanistic, explanation of the causal processes that determine the same object is possible. The Kantian account could thus justify teleology in biology by claiming that both teleology and mechanism are two convincing but mutually irreducible perspectives on nature.\footnote{The necessary and mutually irreducible status of the mechanistic and teleological perspectives is discussed in more detail in Breitenbach (2008).}

Granted, then, that our conception of nature implies two perspectives, mechanistic and teleological, it might be objected that the teleological perspective is simply not relevant to biology. It may be argued that the task of biology is to deal with a conception of nature that is ultimately explicable in naturalistic terms. If we agree on the inevitability of the teleological perspective for an understanding of organic nature, however, this objection must be mistaken. For the project in biology to give explanations of nature in purely naturalistic terms can only be about organic nature if it entails a teleological perspective. We need a teleological outlook on nature in order to be able to think of ourselves as investigating, for instance, a tree or a bird’s eye. Even in order to examine the causal processes that go on in an organic material object, we need to be able to pick out the object as an organised whole in the first place. Once we have allowed the teleological perspective we can then make use of teleological expressions as heuristic tools for the investigation of nature. In asking for the function of a particular organ, for instance, we may be interested in an explanation of this function in terms of the underlying causal processes in nature. What exact aspect of the causal processes we are interested in when asking questions in teleological terms may vary between cases. Following Cummins, when we raise the question “what is the function Z of organ X in system S?”, we may be aiming at investigating the contribution that X makes to a particular capacity of S. Alternatively, following the aetiological account, we may be interested in the reasons for the existence of X, explicated in terms of the evolutionary history of X with respect to Z. The analyses presented by the causal role account and the aetiological theory can thus give us guidance for understanding what biologists may be expecting from their biological research. We should not assume, however, that what biologists expect to gain from an inquiry described in teleological terms is all there is to what those terms imply. The general teleological perspective, it seems, remains irreducible even for biology.
The Kantian account can thus throw some new light on current discussions in the philosophy of biology. While others have argued that the Kantian conception of teleology cannot present any help to contemporary philosophy of biology because Kant does not interpret teleology naturalistically, I suggest that Kant can advance the debate about teleology precisely on the grounds that he does not interpret teleology naturalistically. The original perspective that the Kantian account can add to the debate is that teleological concepts have the function of both a useful heuristic in the search for causal explanations and a necessary and irreducible perspective on living nature.

Bibliography

McLaughlin, Peter (1990): Kant’s Critique of Teleology in Biological Explanation, Lewiston, NY.
List of Contributors

Claus Beisbart, Dr. Dr., Researcher, Technische Universität Dortmund, and Research Fellow at the Center for Philosophy of Science at the University of Pittsburgh

Angela Breitenbach, Dr., Junior Research Fellow in Philosophy, University of Cambridge

Paul Guyer, Professor of Philosophy, University of Pennsylvania

Robert Hanna, Professor of Philosophy, University of Colorado, Boulder

Wiebke Henning, M.A., PhD Student, University of Cologne

Angelica Nuzzo, Professor of Philosophy, Graduate Center, City University of New York

Suma Rajiva, Professor of Philosophy, Memorial University

Eric Watkins, Professor of Philosophy, University of California, San Diego

John Zammito, Professor of History, Rice University