1A Logic Model Answers

1.

(a)

- A truth-function is a function that takes one or many truthvalues as inputs and gives a truth-value as an output.
- (ii) A set of sentences $P_1, P_2, \dots P_n$ tautologically entails a sentence Q if and only if there is no assignment of truth values to the atoms of $P_1, P_2 \dots P_n$ and Q on which $P_1, P_2, \dots P_n$ are all true and Q is false.
- (iii) The material conditional \supset is the two-place propositional connective such that $P \supset Q$ is true unless P is true and Q is false.
- (iv) The metalanguage is the language in which one describes properties and relations of elements of the object language e.g. tautological entailment.

(b)

- A system that is sound but not complete is the system that allows nothing to be deduced from anything.
- (ii) A system that is complete but not sound is the system that allows anything to be deduced from anything.
- (c) To say that a truth-function can be expressed by A, V and ¬ is to say that every truth function is some combination of these truth-functions. To prove it: consider a truth-function G that takes n truth-values to a truth-value. Then G's truth-table is as follows:

11101	1 O S ti dti.		
		 Pn	G
P₁	P ₂	 	X ₁
'	Τ	 	X_2
Ė	T	 	X_3
T	F	 	Υ.
-	F	 	
		 F	X _k
<u> </u>			

Each of $X_1, X_2, \ldots X_k$ is either T or F. Consider all the rows $j_1, j_2, \ldots j_q$ in which X_j = T. Call each such row a *good* row. Now define for each i:

$$\begin{split} &H\left(P_{i},\,m\right)=P_{i}\,\text{if}\,\,P_{i}\,\text{is}\,\,T\,\,\text{in}\,\,\text{row}\,\,m\\ &H\left(P_{i},\,m\right)=\neg\,P_{i}\,\text{if}\,\,P_{i}\,\text{is}\,\,F\,\,\text{in}\,\,\text{row}\,\,m\\ &E\left(m\right)=H\left(P_{1},\,m\right)\,\wedge\,H\left(P_{2},\,m\right)\,\wedge\,\ldots\,\,\wedge\,H\left(P_{n},\,m\right) \end{split}$$

Then G $(P_1, \ldots P_n)$ = E (j_1) \vee E (j_2) \vee ... \vee E (j_q) where $j_1, j_2, \ldots j_q$ index all and only the good rows. And clearly E (j_1) \vee E (j_2) \vee ... \vee E (j_q) involves only \wedge , \vee and \neg .

- 2. (a)
- (i) $Lkj \equiv \neg M$
- (ii) $\forall x (\neg \exists y Lxy \supset (\neg Lxj \land \neg Lxk))$
- (iii) $\neg Mj \supset \forall x (Lkx = x = j)$
- (iv) $\exists x \exists y \forall z ((((z \neq y \lor z \neq x) \land Lzj) \equiv (z = x \lor z = y)) \land Mx \equiv \neg My)$
- (v) $\exists x \exists y \forall z ((Bz \equiv z = x) \land (Mz \equiv z = y) \land (Lzy \supset \neg Lzx))$
- (vi) $\forall x \forall y ((Bx \land By \land y \neq x \land Lxk \land Lyk) \supset (Lxy \land Lyx)$

(b) (i)

Min
$$f_{x}(Li_{x} = Lk_{x})$$
 $f_{x}(Mx > Lk_{x})$
 $TLii$
 Mi
 $Lii = Lk_{i}$
 $Mi > Lk_{i}$
 Lk_{i}
 Lk_{i}
 Lk_{i}
 Lk_{i}
 Lk_{i}
 Lk_{i}

(b) (ii)

```
(b) (iii)
JBRD Mi
Jalxi つてMi
Yx (Jy(Lsing, NLxs) >7 Lkx)
 Hylltex ox=j)
   つつしかり
  Lkbok=j
        D=i
       4x(3y(Lyk 18512+7)>7Lkx)
TLRL
         By (Lok 1 Bon Lky) > 7 Lkk
 #
         735 (LSB 185 1285)
           Yor (Lykaby a Lby)
            7 (LRHABRALLE)
                   7 (BEALLER) JLELT
       7 (LER)
                      7BR
        #
                         -M_{i}
                  TIBL
```

(b) (iv)

		S	T	NT
	R		N	N
x is y's father	N	N N	N	N
x is a brother N		N		
of y			N	N
x is y's only	N	Υ	114	
sibling			N	N
x and y have	N	Y	14	
no common				
ancestor			Y	N
x is an	N	N	•	
ancestor of y			N	N
x loves y ≡ y	Υ	Υ		
loves x			N	N
x loves y v y	N	Y	17	
loves x			N	N
∀z (x loves z	N	N	IN IN	
≡ z loves y)				N
x loves John	N	N	N	17
y loves Jane				N
Majority pref. N		N	N	

1

(a) This only holds if 5 black socks and 1 white sock so the answer is 0

(b)
$$Pr(2B|1B) = Pr(2B) / Pr(1B) = 0.25/0.75 = 1/3$$

(c)
$$Pr(2B \mid 1BM) = Pr(2B \land 1BM) / Pr(1BM) = (13/196) / (27/196) = 13/27$$

(d) Use the formula:

$$Pr(A|T) = Pr(T|A) Pr(A) / [Pr(T|A) Pr(A) + Pr(T|B) Pr(B)]$$
$$= (1/2 \times 1/2) / [1/2 \times 1/2 + 2/3 \times 1/2] = 3/7$$

(e) use the same formula as in (d): the answer is

$$(0.9 \times 0.2) / (0.9 \times 0.2) + (0.1 \times 0.8) = 9/13$$