
1A Logic — 2013 Model Answers

Section A

1. This is a question about TFL. Attempt all parts of this question. [Note that
most of the material in this question has been moved to the ‘metatheory’
section of the 1B logic paper, and is no longer examinable at part 1A.
Answers are provided for instructional purposes only. The texbook for
this part of the syllabus is available on Tim Button’s website]

(a) Explain what these three sentences mean, and explain the differences between
them: [15]

(i) A |= C
(ii) A ` C
(iii) A→ C

Sentence (i) is not a sentence of TFL, rather it is a sentence of mathematically
augmented English that we use to talk about sentences of TFL; i.e. is is metalin-
guistic, and the sentences flanking |= are mentioned, rather than used. A |= C
says something about the valuation functions of TFL, namely that every valuation
under which A is true is a valuation on which C is true. Sentence (ii) is likewise
metalinguistic. However, it says something our natural deduction system, namely
that there is some proof of C, the only premise of which is A. Contrasting to this,
sentence (iii) is a TFL sentence, where ‘→’ is a truth–functional connective in the
language of TFL (the material conditional), and ‘A’ and ‘C’ are TFL sentences.

However, these three notions are importantly connected; Our natural deduction
system is sound, meaning that if A ` C then A |= C. Conversely, our proof system
is complete, meaning that if A |= C then A ` C. Moreover, TFL has the ‘deduction
property’, namely that A ` C if, and only if, ` A → C. Hence although sentences
(i) through (iii) mean very different things, we have it that A |= C iff A ` C iff
` A→ C iff |= A→ C.

(b) State and prove the Disjunctive Normal Form Theorem. [50]

A sentence of the language of TFL is in DNF (Disjunctive Normal Form) if and only
if it satisfies the following conditions:

(i) The only connectives occurring in the sentence are negations, conjunctions and
disjunctions.
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(ii) Any occurrence of negation has minimal scope (i.e. is immediately prefixed to
an atomic sentence).
(iii) No disjunction in the sentence appears inside the scope of any conjunction ap-
pearing in the sentence.

The DNF theorem states that every sentence has an a tautologically equivalent sen-
tence in DNF.

Proof: For any sentence Φ of our language, let φ1...φn be the atomic sentences oc-
curring in Φ. Now, examine the truth table of Φ. If every line of the table is false,
then Φ is tautologically equivalent to (P ∧¬P ), which is in DNF. If Φ is true on at
least one line of its truth table, construct a sentence of the following form for each
line i of Φ’s truth table on which Φ is true: Ψi = (ψ1 ∧ ... ∧ ψn), where ψm = φm

if φm is true on line i, other wise ψm = ¬φm. Clearly, each Ψi is true on exactly
the valuation of atoms on line i of Φ’s truth table (though note that a fully rigorous
proof of this would require mathematical induction). Now let Ψ = (Ψi1 ∨ ....∨Ψim).
By construction, Ψ is in DNF, and is tautologically equivalent to Φ, since if the
latter is true, one of Ψ’s disjuncts is true, and vice–versa. Since these cases are
exhaustive, the DNF theorem follows.

(c) Explain what it means to say, of some connectives, that they are jointly expres-
sively adequate. Show that ‘∧’ and ‘¬’ are jointly expressively adequate. You may
rely on your answer to part (B). [15]

Connectives are said to be jointly expressively adequate if, and only if, every sen-
tence of the language of TFL is tautologically equivalent to a sentence in which the
only those connectives appear. Our proof of the DNF theorem is sufficient to show
that ‘¬’, ‘∧’, and ‘∨’ are jointly expressively adequate. It follows via De Morgan’s
laws that ‘¬’ and ‘∧’ are jointly expressively adequate. Use the procedure above, for
an arbitrary sentence, of constructing a tautologically equivalent sentence in DNF.
If our our original sentence was a contradiction, it’s DNF equivalent is (P ∧¬P ), in
which no disjunctions appear. Otherwise, it is of the form (Ψi1 ∨ .... ∨Ψim). By De
Morgan’s laws, this is tautologically equivalent to ¬(¬Ψi1 ∧ ....∧¬Ψim), in which no
disjunctions appear by the construction given above.

(d) Are the connectives ‘∧’, ‘∨’, ‘→’ and ‘↔’ jointly expressively adequate? Explain
your answer. [20]

They are not. A fully rigorous proof of this fact would require mathematical induc-
tion. However, intuitively they are not expressively adequate because no sentence
whose only connectives are amongst those given is tautologically equivalent to ¬P .
This sentence is false if all atomic sentences appearing in it are true. However, if
all of the atomic sentences appearing in a conjunction, disjunction, conditional, or
biconditional sentence are true, then that sentence is also true, as an examination of
the first line of the truth–tables of these connectives reveals. Induction is needed to
show this in full generality, but it is clear enough that if you only have connectives
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that are true when all of their arguments are true, no combination of these connec-
tives and atomic sentences will be able to express negation.

2. Attempt all parts of this question. You must use the proof system from the
course textbook.

(a) Show each of the following: [40]

(i) ` (P → Q) ∨ (Q→ P )

1 P

2 Q

3 P R, 1

4 Q→ P →I, 2–3

5 (P → Q) ∨ (Q→ P ) ∨I, 4

6 ¬P

7 P

8 ⊥ ⊥I, 6, 7

9 Q ⊥E, 8

10 P → Q →I, 7–9

11 (p→ Q) ∨ (Q→ P ) ∨I, 10

12 (P → Q) ∨ (Q→ P ) TND, 1–5, 6–11
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(ii) ¬(P ↔ Q),¬P ` Q

1 ¬(P ↔ Q)

2 ¬P

3 ¬Q

4 Q

5 ⊥ ⊥I, 3, 4

6 P ⊥E, 5

7 P

8 ⊥ ⊥I, 2, 7

9 Q ⊥E, 8

10 P ↔ Q ↔I, 4–6, 7–9

11 ⊥ ⊥I, 1, 10

12 ¬¬Q ¬I, 3–11

13 Q DNE, 12

(b) Show each of the following: [60]

(i) ∃x(Fx ∨Gx) ` ∃xFx ∨ ∃xGx

1 ∃x(Fx ∨Gx)

2 Fa ∨Ga

3 Fa

4 ∃xFx ∃I, 3

5 ∃xFx ∨ ∃xGx ∨I, 4

6 Ga

7 ∃xGx ∃I, 6

8 ∃xFx ∨ ∃xGx ∨I, 7

9 ∃xFx ∨ ∃xGx ∨E, 2, 3–5, 6–8

10 ∃xFx ∨ ∃xGx ∃E, 1, 2–9
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(ii) ∀x(Fx → ∀yRxy), ∀x(Gx → ∀zRxz),∀x(∀wRxw → (Fx ∧ Gx)) ` ∀x(Fx ↔
Gx)

1 ∀x(Fx→ ∀yRxy)

2 ∀x(Gx→ ∀zRxz)

3 (∀wRxw → (Fx ∧Gx)

4 Fa

5 Fa→ ∀yRay ∀E, 1

6 ∀yRay →E, 4, 5

7 ∀wRaw → (Fa ∧Ga) ∀E, 3

8 Rab ∀E, 6

9 ∀wRaw ∀I, 8

10 Fa ∧Ga →E, 7, 9

11 Ga ∧E, 10

12 Ga

13 Ga→ ∀zRaz ∀E, 2

14 ∀zRaz →E, 12, 13

15 ∀wRaw → (Fa ∧Ga) ∀E, 3

16 Rab ∀E, 14

17 ∀wRaw ∀I, 16

18 Fa ∧Ga →E, 15, 17

19 Fa ∧E, 18

20 Fa↔ Ga ↔I, 4–11, 12–19

21 ∀x(Fx↔ Gx) ∀I, 20
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(iii) ∀x∃yRxy, ∃x∀yx = y ` ∃y∀xRxy

1 ∀x∃yRxy

2 ∃x∀yx = y

3 ∃yRay ∀E, 1

4 ∀yb = y

5 Rac

6 b = c ∀E, 4

7 b = d ∀E, 4

8 c = d =E, 6, 7

9 Rad =E, 5, 8

10 Rad ∃E, 3, 5–9

11 Rad ∃E, 2, 4–10

12 ∀xRxd ∀I, 11

13 ∃y∀xRxy ∃I, 12

3. Attempt all parts of this question.

(a) Using the following symbolization key

domain: all physical objects
Mx: x is a mug
Rx: x is red
Tx: x is a table
Bxy: x belongs to y
a: Alice

symbolize each of the following sentences as best you can in FOL. If any sentences
are ambiguous, or cannot be symbolized very well in FOL, explain why. [65]

(i) Every mug belonging to Alice is red.

∀x((Mx ∧Bxa)→ Rx)

(ii) The table is red.

∃x∀y((Ty ↔ y = x) ∧Rx)
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(iii) Alice’s mug is red.

∃x∀y(((My ∧Bya)↔ x = y) ∧Rx)

(iv) Alice’s mug does not exist.

¬∃x∀y((My ∧Bya)↔ x = y)

Comment: Formalizing is slightly awkward here. Because we do not have an ‘exists’
predicate, we cannot in FOL say of Alice’s mug that it doesn’t exist. Rather, be-
cause existence is expressed in FOL using the existential quantifier, we have to say
something more akin to ‘there is no such thing as Alice’s mug’.

(v) Two mugs are on the table.

∃x∀y((Ty ↔ x = y) ∧ ∃v∃w(((Mv ∧Mw) ∧ ¬v = w) ∧ (Bvx ∧Bwx)))

Comment: This is somewhat awkward because our symbolization key doesn’t have
a predicate ‘x is on y’. Here, and later in this question, I’ve assumed that whatever
is on a table belongs to it, and whatever isn’t on a table doesn’t belong to it.

(vi) If the mug belongs to anyone, it belongs to Alice.

∃x∀y((My ↔ x = y) ∧ (∃vBxv → Bxa))

(vii) None of the mugs on the table is Alice’s.

∃x∀y((Ty ↔ x = y) ∧ ¬∃z((Mz ∧Bzx) ∧Bza))

Comment: The sentence is ambiguous in several ways. I have taken it to mean that
there is a table, and it isn’t the case that some mug on it is Alice’s. It could also be
read to mean that there is a table, there are some mugs on the table, and none of
them are Alice’s. Further, it could be read as meaning that there is a table, there
is some mug which is Alice’s, and it isn’t the case that it is identical to any mug
on the table. Finally it could also be taken to mean that there is a table, there is
some mug belonging to Alice, there are some mugs on the table and that Alice’s
isn’t identical to any of them.

(viii) Every mug is on exactly one table, and on every table there is exactly one mug.

(∀x(Mx→ ∃y∀z((Bxz ∧ Tz)↔ y = z))) ∧ (∀x(Tx→ ∃y∀z((Bzx ∧Mz)↔ y =
z))))
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(b) Show that each of the following claims is wrong. [35]

(i) Fa,¬Ga, Fb,¬Gb,¬Fc,Gc |= ∀x(Fx↔ ¬Gx)

D = {0, 1, 2, 3}
|F | = {0, 1, 3}
|G| = {2, 3}
|a| = 0
|b| = 1
|c| = 2
|d| = 3

(ii) ∀x(Fx → ∃y(Gy ∧ Rxy ∧ ∀z((Gz ∧ Rxz) → y = z)))) |= ∀x(Gx → ∃y(Fy ∧
Ryx ∧ ∀z((Fz ∧Rzx)→ y = z)))

D = N
|F | = {x|x is odd}
|G| = {x|x is even}
|R| = {(x, y)|(x+ 1) = y}

In this interpretation, 0 serves as our counterexample. It is indeed true that every
odd number has a unique even successor. However it is not true that of all even num-
bers that they have a unique odd predecessor, since no natural number is less than 0.

(iii) ∃x∀y¬Rxy, ∀x¬Rxx, ∀x∃y(Rxy) |= ∃x∃y(¬x = y ∧ ∃z(Rxz ∧Ryz))

D = N
|R| = {(x, y)|(x+ 1) = y}

In this interpretation, all of the sentences to the left of the turnstile are true (0 is
not the successor of anything, no number is its own successor, and every number has
a successor). But the sentence to the right of the turnstile is false, since no distinct
numbers share a successor (i.e. if ¬x = y then ¬(x+ 1) = (y + 1)).

4. Attempt all parts of this question.

(a) Write down the axiom of extensionality. Then, using standard notation, define
the set-theoretic notions of: union, intersection, subset, proper subset, and power
set. [10]

Throughout this question, we take upper-case variables to have only sets as their
range. Lower-case variables range over everything, as usual.

Extensionality: ∀X∀Y (X = Y ↔ ∀z(z ∈ x↔ z ∈ y))
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A ∪B = {x|x ∈ A ∨ x ∈ B}
A ∩B = {x|x ∈ A ∧ x ∈ B}
A ⊆ B ↔ ∀x(x ∈ A→ x ∈ B)
A ⊂ B ↔ (A ⊆ B ∧ ¬A = B)
P(A) = {X|X ⊆ A}

(b) Give examples for each of the following: [10]

(i) Three non-empty sets A, B, and C, such that none of A ∩B, B ∩C, and A ∩C
is empty, but (A ∩B) ∩ C is empty. Let A = {0, 1}, B = {1, 2} and C = {2, 0}.

(ii) Two different non-empty sets, A and B, such that (P(A) ∪ P(B)) = P(A ∪B).
Let A = {0} and B = {0, 1}. Then P(A) = {∅, {0}}, P(B) = {∅, {0} , {1} , {0, 1}},
and (P(A) ∪ P(B)) = {∅, {0} , {1} , {0, 1}}. Further, A ∪ B = {0, 1} = B, and
P(B) = {∅, {0} , {1} , {0, 1}} = (P(A) ∪ P(B)), as required.

(c) Give examples of each of the following: [25]

(i) A set whose intersection with its power set is non-empty. {∅}. The intersection
of this set with its powe rset is itself, which is non-empty.

(ii) A set whose intersection with the power set of its power set is non-empty. {∅}.
Again the intersection of this set with its power set’s power set is {∅}, which is
non-empty.

(iii) A non-empty set that is a subset of the power set of one of its members. {∅}
once again does the job. This set is identical to the power set of its only member,
and hence is a subset of a member’s power set.

(d) Write down the axioms of probability. Explain conditional probability. [10]

Probability Axioms:

Pr(V ) = 1, where V is our sample space (set of possible outcomes).
Pr(X) ≥ 0 where X ∈ P(V )
if X ∩ Y = ∅ then Pr(X ∪ Y ) = Pr(X) + Pr(Y )

Pr(A|B) = Pr(A∩B)
Pr(B)

. This definition is rather intuitive; we can take Pr(A) as keep-

ing track of the A’s in the sample space, and think of Pr(A|B) as tracking the A’s
amongst the B’s (which are themselves in the sample space). This is exactly what
we should expect of a definition of ‘the probability of A, given B’.

(e) There are two equally probable hypotheses: Either Bryce baked exactly 10 cup-
cakes today, or Bryce baked exactly 100 cupcakes today. In either case, Bryce piped
unique numbers onto them: between 1 and 10, if there are exactly 10 cupcakes, or
between 1 and 100, if there are exactly 100 cupcakes. Bryce hands you a cupcake
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with the number 9 piped onto it. How probable is it, now, that Bryce baked exactly
100 cupcakes today? Explain your reasoning, highlighting any assumptions that you
have made. [15]

To answer this question, we will assume that ‘9’ is the only numeral piped onto the
cake we’re given (i.e. we rule out that the cake has ‘39’ piped onto it, for instance).
We further assume that the hypotheses are exhaustive, and that Bryce handed us a
cake at random. We will use:

Bayes’s Theorem: Pr(H|E) = (Pr(E|H)Pr(H))
((PrE|H)Pr(H))+(Pr(E|¬H)Pr(¬H))

Letting ‘E’ mean that you have been given a cake with the number ‘9’ on it, and
H be the hypothesis that Bryce made 100 cupcakes. Since the two hypotheses are
equally probable, we have:

Pr(H|E) =
( 1
100
× 1

2
)

( 1
100
× 1

2
)+( 1

10
× 1

2
)

=
1

200

( 1
200

+ 1
20

)
=

1
200
11
200

≈ 0.09

(f) Attempt both parts of this question. [30]

(i) You are tossing a fair six-sided die. What is the probability that it lands 6 on
each of the first three tosses? What is the probability that it lands 1, then 2, then 5?

Our sample space for a toss of a fair die V = {1, 2, 3, 4, 5, 6}. The result of three
tosses is then V × V × V = V 3. Exactly one member of V 3 corresponds to rolling
a 6, then a 6, then a 6, and likewise to rolling a 1, then a 2, then a 5. These are
therefore equally probable. Since there are 6 × 6 × 6 = 216 members of V 3, the
probability in each case is 1

216
.

(ii) Mr Corleone always chooses the same national lottery numbers. They came up
in three successive lotteries, and now Mr Corleone is rich. But the lottery organisers
are suing him for fixing the lottery. Mr Corleone’s defence lawyer says: ‘It is no more
or less likely, that there numbers should come up three times in a row, than that any
other sequence of numbers should come up; so why should it be special grounds for
suspicion?’ Is there anything wrong with the lawyers argument? Carefully explain
your answer.

The lawyer’s argument is fallacious. It is equally likely that Corleone’s numbers
come up three times in a row as any other particular triple of sequences, and hence,
given that Corleone picks the same numbers each week, no outcome implicates Mr
Corleone in fraud. But crucially, the defence has failed to take account of the prob-
ability that any given person wins the lottery in a given week. We’ll use Bayes’s
theorem again, and let ‘E’ be ‘Mr Corleone won the lottery three times in a row’,
and ‘H’ be ‘Mr Corleone tried to fix the lottery’. The key problem with the lawyers
argument is that, since winning the lottery three times in a row is so unlikely,
Pr(H|E) is close to 1 however trustworthy we take the suspect to be, given that
Pr(E|¬H) is so close to 0. Let’s spell this out in more detail.
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According to Google, the odds of winning the national lottery are approximately
1/175,000,000. Hence, the odds of winning three times in a row are approximately
1 in 5.3 × 1025. We’ll be as generous as we can to Mr Corleone; let’s assume that
lottery fixing only works 1 time in 10, and that Mr Corleone is so trustworthy that
the odds of him committing this heinous crime are, absent of evidence, only 1 in a
trillion. Plugging this into Bayes’s theorem:

Pr(H|E) =
1
10
× 1

1012

( 1
10
× 1

1012
)+( 5

1025
×( 1012−1

1012
))
≈

1
1013

1
1013

+ 5
1025
≈ 0.0000000000001

0.0000000000001000000000005

So Pr(H|E) ≈ 0.999999999995

So Mr Corleone is most probably guilty, and we’ve already been generous in our
assumptions about his virtuous character and inability to fix lotteries!

5. Attempt all parts of this question.

(a) Explain what it means to say that a relation is: [5]

(i) Reflexive.

A relation, R, is reflexive with respect to a given domain if, and only if, ∀xRxx.

(ii) Symmetric.

A relation, R, is symmetric with respect to a given domain if, and only if,
∀x∀y(Rxy → Ryx).

(iii) Transitive.

A relation, R, is transitive with respect to a given domain if, and only if,
∀x∀y∀z((Rxy ∧Ryz)→ Rxz).

(b) Say that a relation is Euclidean iff ∀x∀y∀z((Rxy ∧ Rxz) → Ryz). For each of
the following relations on the domain of all people (living or dead), say whether the
relation is reflexive, whether it is symmetric, whether it is transitive, and whether
it is Euclidean. In each case that the relation fails to have one of these properties,
briefly explain your answer: [50]

(i) x and y have the same surname

This is reflexive, symmetric, transitive, and Euclidean.
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(ii) x and y have the same surname or the same first name.

This is reflexive and symmetric. It is not transitive (let x = Onika Maraj, y =
Carol Maraj, and z = Carol Swain). It is also not Euclidean (let x = Carol Maraj,
y = Onika Maraj), and z = Carol Swain).

(iii) x loves y only if y loves x.

This is reflexive. It isn’t symmetric (consider the case where Nicki doesn’t love
Meek, and Meek loves Nicki). Nor is it transitive (Suppose Nicki doesn’t love Kim
or Meek, Kim doesn’t love Nicki or Meek, Meek doesn’t love Kim, but does love
Nicki, and let x = Nicki, y = Kim, and z = Meek ). Nor is it Euclidean (Let x =
Kim y = Meek, z = Nicki).

(iv) x loves y iff y loves x.

This is reflexive and symmetric. It isn’t transitive (suppose as above and let x =
Meek, y = Kim and z = Nicki), nor Euclidean (let x = Kim, y = Meek, z = Nicki)

(v) x is Winston Churchill or y is Bertrand Russell.

This isn’t reflexive (it isn’t true of Nicki, for example). It isn’t symmetric (let
x = Churchill, y = Nicki). It is transitive (if x = Churchill, then Rxz holds for any
z. If y = Russell, then Ryz holds only iff z = Russell, in which case Rxz for any z).
It isn’t Euclidean (Suppose x = Churchill, y = Nicki, and z = Kim).

(vi) x is Winston Churchill iff y is Bertrand Russell.

This isn’t reflexive (let x = Churchill). It isn’t symmetric (x = Nicki, y =
Churchill). It isn’t transitive (x = Churchill, y = Russell, and z = Nicki). It isn’t
Euclidean either (x = Russell, y = Churchill, z = Nicki).

Give examples of relations with the following properties. In each case be careful to
specify the domain. [65]

In each case, let the domain = N, the natural numbers.

(i) Reflexive and transitive, but not symmetric.

Consider the ≤ relation (‘x is less–than–or–equal–to y’). This is reflexive and
transitive, but not symmetric (e.g. 0 ≤ 1, but ¬1 ≤ 0).

(ii) Euclidean and transitive, but not reflexive.

The empty relation satisfies this trivially, since the Euclidean and transitivity
criteria always have a false antecedent where R is empty. However, since there are
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numbers which do not bear R to themselves, the empty relation isn’t reflexive.

(iii) Symmetric and transitive, but not reflexive.

The empty relation satisfies this for similar reasons.

(iv) Reflexive and symmetric, but neither transitive nor Euclidean.

Let R = {(x, y)|x = y ∨ x = y + 1 ∨ x+ 1 = y}. This is reflexive since every
number is self-identical, and symmetric, since if x = y + 1 then y + 1 = x and
vice–versa. But it isn’t transitive, since R01 and R12 and ¬R02, nor is it Euclidean
since R10 and R12 and ¬R02.

(v) Neither reflexive, symmetric, transitive, nor Euclidean.

Let R = {(0, 1), (1, 2), (0, 3)}. This relation may be a little gerrymandered, but
it isn’t reflexive (since ¬R00), nor is it symmetric (since R01 and ¬R10), nor tran-
sitive (since R01, R12 and ¬R02), nor Euclidean (since R01, R03 and ¬R13).
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