
1A Logic — 2014 Model Answers

Section A

1. Attempt both parts of this question.

(a) Each of the following claims is either true or false. For each true claim , show
that it is true by providing a suitable formal proof. For each false claim, show that
it is false by providing a suitable truth-table: [15 each]

(i) ` ((¬B → ¬A)→ A)→ A)

1 A

2 ((¬B → ¬A)→ A)

3 A R, 1

4 ((¬B → ¬A)→ A)→ A →I, 1–3

5 ¬A

6 ¬B

7 ¬A R, 5

8 ¬B → ¬A →I, 5–7

9 (¬B → ¬A)→ A

10 A →E, 8–9

11 ⊥ ⊥I, 5, 10

12 ¬((¬B → ¬A)→ A) ¬I, 9–11

13 (¬B → ¬A)→ A

14 ⊥ ⊥I, 12–13

15 A ⊥E, 14

16 ((¬B → ¬A)→ A)→ A →I, 13–15

17 ((¬B → ¬A)→ A)→ A TND, 1–4, 5–16
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(ii) ¬E → ¬¬F,¬G→ ¬E ` G→ ¬F

The following valuation will produce the required line of the truth table. Let
v(G) = v(F ) = v(E) = T. Since the antecedents of both sentences to the left
of the turnstile are false, both sentences to the left of the turnstile are true. How-
ever the antecedent of the sentence to the right of the turnstile is true, and the
consequent false, hence the sentence to the right of the turnstile is false.

(iii) (C ∨ ¬A)→ (B ∧D), C → ¬B,¬A→ ¬D ` A ∧ ¬C

1 (C ∨ ¬A)→ (B ∧D)

2 C → ¬B

3 ¬A→ ¬D

4 C

5 C ∨ ¬A ∨I, 4

6 B ∧D →E, 1, 5

7 B ∧E, 6

8 ¬B →E, 2, 4

9 ⊥ ⊥I, 7–8

10 A ∧ ¬C ⊥E, 9

11 ¬C

12 A

13 A ∧ ¬C ∧I, 11–12

14 ¬A

15 C ∨ ¬A ∨I, 14

16 B ∧D →E, 1, 15

17 D ∧E, 16

18 ¬D →E, 3, 14

19 ⊥ ⊥I, 17–18

20 A ∧ ¬C ⊥E, 19

21 A ∧ ¬C TND, 12–13, 14–20

22 A ∧ ¬C TND, 4–10, 11–21
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(iv) ¬(T → S), (S ↔ (T ↔ U)) ` S ∧ ¬(T ↔ U)

The following valuation function will give us the required line of the truth table:
v(T ) = T, v(S) = v(U) = F. Our first sentence to the left of the turnstile is true,
since the conditional (T → S) is false. Our second premise to the left of the turnstile
is also true; T ↔ U is false, as is S, making their biconditional true. However, since
S is false, so is the sentence to the right of the turnstile.

(v) C ↔ B,B ∨D, (C ∨D)→ A ` A

1 C ↔ B

2 B ∨D

3 (C ∨D)→ A)

4 B

5 C ↔E, 1, 4

6 C ∨D ∨I, 5

7 A →E, 3, 6

8 ¬B

9 D DS, 2, 8

10 C ∨D ∨I, 9

11 A →E, 3, 10

12 A TND, 4–7, 8–11
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(vi) P ↔ ¬Q,Q↔ ¬R ` P ↔ R

1 P ↔ ¬Q

2 Q↔ ¬R

3 P

4 ¬Q ↔E, 1, 3

5 ¬R

6 Q ↔E, 2, 5

7 ⊥ ⊥I, 4, 6

8 ¬¬R ¬I, 5–7

9 R DNE, 8

10 R

11 Q

12 ¬R ↔E, 2, 11

13 ⊥ ⊥I, 10, 12

14 ¬Q ¬I, 11–13

15 P ↔E, 1, 14

16 P ↔ R ↔I, 2–9, 10–15

(b) Explain the difference between the meanings of ‘`’ and ‘|=’. Explain, with ref-
erence to one of the false claims in part (a), why we are licensed in inferring it’s
falsity from the truth table that you provided. [10]

The central distinction is the ‘`’ is a proof-theoretic symbol, and ‘|=’ is model–
theoretic, or semantic. More specifically, if Γ ` φ, that means that there is a proof
of φ using our natural deduction system the premises of which are all among Γ.
By contrast, Γ |= φ means that any valuation function that assigns truth values to
the atomic sentences appearing in Γ such that the truth-table for each γ amongst Γ
reads ‘T‘ is also such that the truth table for φ reads ‘T’. However, TFL’s deductive
system is sound with respect to its semantics, i.e. if Γ ` φ, then Γ |= φ. Contra-
posing, we have that if Γ 6|= φ then Γ 6` φ. Hence, if we can construct a valuation
giving us a truth-table under which all the γ’s amongst Γ are true and φ is false, we
know that there is no natural deduction from Γ to φ, justifying our conclusions in
part (a) numbers (ii) and (iv).
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2. Attempt all parts of this question.

(a) Using the following symbolisation key:

Domain: all people
Nx: x is a ninja
Bxy: x is behind y
Sxy: x can see y
a: Akira

symbolise each of the following sentences as best you can in FOL. Comment on your
translations where appropriate, in particular highlighting any difficulties in symbol-
isation. [60]

(i) Everybody behind Akira is a ninja.

∀x(Bxa→ Nx)

(ii) If Akira cannot see someone, that person doesn’t exist.

¬∃x¬Sax

Comment: This is slightly awkward because we do not have a predicate expressing
existence. Rather, existence is represented in FOL by the existential quantifier. So
we cannot formulate an FOL sentence that says of something that Akira cannot see
that it is non-existent. Rather we must content ourself with saying that there is no
one Akira cannot see.

(iii) Only a ninja standing behind Akira is invisible to him.

∀x(¬Sax→ (Nx ∧Bxa))

(iv) Akira is invisible to everyone except ninjas.

∀x(¬Nx→ ¬Sxa)

(v) If one ninja stands behind another, the latter can see the former.

∀x∀y((Nx ∧Ny)→ Bxy → Syx)

Comment: This is slightly ambiguous between at ‘at least one’ and ‘exactly one’. It
seems, however, that the English is more naturally read as meaning that ninjas can
see other ninjas that are behind them, rather than as meaning that if exactly one
ninja stands behind another, the latter can see the former.

(vi) The ninja that Akira cannot see is behind him.
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∃x∀y((Ny ∧ ¬Say)↔ x = y) ∧Bxa)

(vii) No one can see the ninja behind Akira, not even that ninja herself.

∃x∀y((Ny ∧Bya)↔ x = y) ∧ ¬∃zSzx)

Comment: There is no way to emphasise the presumably surprising fact that the
ninja behind Akira is so well–concealed that she cannot see herself. Once we have
said that no one can see her, that is all to be said on the matter as far as FOL is
concerned. We could add a clause such as ∧¬Sxx, but from a logical point of view,
this would be superfluous.

(viii) Behind every ninja Akira cannot see, there is another ninja that Akira cannot
see.

∀x((Nx ∧ ¬Sax)→ ∃y((Ny ∧Byx) ∧ ¬Say))

Comment: There is some temptation here to add a clause to the effect that the
second ninja is distinct from the first. However, we needn’t do this if we assume
(quite reasonably) that nothing is behind itself.

(ix) For every ninja that Akira cannot see, there are two more ninjas that Akira
cannot see.

∀x((Nx∧¬Sax)→ ∃y∃z((((¬x = y∧¬x = z)∧¬y = z)∧ (Ny∧Nz))∧ (¬Say∧
¬Saz)))

(x) Akira can see each of the three ninjas.

∃x∃y∃z∀v(((Nv ↔ ((v = x ∨ v = y) ∨ v = z)) ∧ ((¬x = y ∧ ¬x = z) ∧ ¬y =
z)) ∧ ((Sax ∧ Say) ∧ Saz))
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(b) Formalise these arguments, and then use natural deduction to show that they
are valid: [40]

(i) If Akira cannot see someone, that person doesn’t exist. The ninja is behind
Akira. So Akira can see the ninja.

¬∃x¬Sax, ∃x∀y((Ny ↔ x = y) ∧Bax) ∴ ∃x∀y((Ny ↔ x = y) ∧ Sax)

1 ¬∃x¬Sax

2 ∃x∀y((Ny ↔ x = y) ∧Bax)

3 ∀y((Ny ↔ b = y) ∧Bab)

4 (Nc↔ b = c) ∧Bab) ∀E, 3

5 (Nc↔ b = c) ∧E, 4

6 ¬Sab

7 ∃x¬Sax ∃I, 6

8 ⊥ ⊥I, 1, 7

9 ¬¬Sab ¬I, 6–8

10 Sab DNE, 9

11 (Nc↔ b = c) ∧ Sab ∧I, 5, 10

12 ∀y((Ny ↔ b = y) ∧ Sab) ∀I, 11

13 ∃x∀y((Ny ↔ x = y) ∧ Sax) ∃I, 12

14 ∃x∀y((Ny ↔ x = y) ∧ Sax) ∃E, 2–13
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(ii) There is at least one ninja whom Akira cannot see. Behind every ninja Akira
cannot see, there is another ninja that Akira cannot see. So there are at least two
ninjas that Akira cannot see.

∃x(Nx∧¬Sax),∀x((Nx∧¬Sax)→ ∃y((Ny∧¬Say)∧¬x = y)) ∴ ∃x∃y(((Nx∧
Ny) ∧ (¬Sax ∧ ¬Say)) ∧ ¬x = y)

1 ∃x(Nx ∧ ¬Sax)

2 ∀x(((Nx ∧ ¬Sax)→ ∃y((Ny ∧ ¬Say) ∧ ¬x = y))

3 Nb ∧ ¬Sab

4 ((Nb ∧ ¬Sab)→ ∃y((Ny ∧ ¬Say) ∧ ¬b = y)) ∀E, 2

5 ∃y((Ny ∧ ¬Say) ∧ ¬b = y) →E, 3, 4

6 ((Nc ∧ ¬Sac) ∧ ¬b = c)

7 Nc ∧ ¬Sac ∧E, 6

8 ¬b = c ∧E, 6

9 Nb ∧E, 3

10 ¬Sab ∧E, 3

11 Nc ∧E, 7

12 ¬Sac ∧E, 7

13 Nb ∧Nc ∧I, 9, 11

14 ¬Sab ∧ ¬Sac ∧I, 10, 12

15 ((Nb ∧Nc) ∧ (¬Sab ∧ ¬Sac)) ∧I, 13, 14

16 (((Nb ∧Nc) ∧ (¬Sab ∧ ¬Sac)) ∧ ¬b = c) ∧I, 8, 15

17 ∃y(((Nb ∧Ny) ∧ (¬Sab ∧ ¬Say)) ∧ ¬b = y) ∃I, 16

18 ∃y(((Nb ∧Ny) ∧ (¬Sab ∧ ¬Say)) ∧ ¬b = y) ∃E, 6–17

19 ∃x∃y(((Nx ∧Ny) ∧ (¬Sax ∧ ¬Say)) ∧ ¬x = y) ∃I, 18

20 ∃x∃y(((Nx ∧Ny) ∧ (¬Sax ∧ ¬Say)) ∧ ¬x = y) ∃E, 3–19
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3. Attempt all parts of this question.

(a) Define the following set-theoretic notions: union, intersection, subset, power set,
Cartesian product. [10]

A ∪B = {x|x ∈ A ∨ x ∈ B}
A ∩B = {x|x ∈ A ∧ x ∈ B}
A ⊆ B ↔ ∀x(x ∈ A→ x ∈ B)
P(A) = {x|x ⊆ A}
A×B = {(a, b)|a ∈ A ∧ b ∈ b}

(b) Each of the following statements is either true or false. In each case say which
and briefly explain why: [45]

(i) For any sets A, B and C, if A ⊆ B and B ⊆ C then A ⊆ C.

True. By hypothesis, all members of A are members of B. All members of B,
including the members of A, are in C. Hence, all the members of A are members of
C, i.e. A ⊆ C.

(ii) For any sets A and B, if A ⊆ B then A ⊆ P(B).

False. This is because A might contain an individual (i.e. non–set) as a member.
Yet all members of P(B) are sets, since it is a set of subsets. E.g. Let A = B =
{Kanye}. Then P(B) = {∅, {Kanye}}. But Kanye ∈ A and Kanye 6∈ P(B), hence
A 6⊆ P(B).

(iii) For any sets A and B, if A ∈ P(B) then P(A) ⊆ P(B).

True. Suppose otherwise. Since A ∈ P(B), we have it that A ⊆ B. But
∃a(a ∈ P(A) ∧ a 6∈ P(B)), by hypothesis that P(A) 6⊆ P(B). So a ⊆ A and a 6⊆ B.
Hence, ∃x(x ∈ a ∧ (x ∈ A ∧ x 6∈ B)). But A ⊆ B, so x ∈ B. Contradiction.

(iv) For any sets A, B and C, (A ∩B)× (B ∩ C) ⊆ (A× C).

True. (A ∩ B) × (B ∩ C) = {(x, y)|(x ∈ A ∧ x ∈ B) ∧ (y ∈ B ∧ y ∈ C)}. If
x ∈ A ∧ x ∈ B, then x ∈ A. Similarly if y ∈ B ∧ y ∈ C, then y ∈ C. Hence, if
(x, y) ∈ (A∩B)×(B∩C), then (x, y) ∈ A×B. That is, (A∩B)×(B∩C) ⊆ (A×C).

(v) For any set A, P(A) ∈ P(P(A)).

True. Since P(A) ⊆ P(A), P(A) ∈ {x|x ⊆ P(A)} = P(P(A)).
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(c) Define the following notions from the logic of relations: reflexive, symmetric,
transitive, equivalence relation. [10]

A relation, R, is reflexive with respect to a given domain if, and only if, ∀xRxx.

A relation, R, is symmetric with respect to a given domain if, and only if,
∀x∀y(Rxy → Ryx).

A relation, R, is transitive with respect to a given domain if, and only if,
∀x∀y∀z((Rxy ∧Ryz)→ Rxz).

A relation is an equivalence relation with respect to a given domain if, and only
if, it is reflexive, symmetric and transitive with respect to that domain.

(d) Call a relation R negatively transitive if ∀x∀y∀z((¬Rxy ∧ ¬Ryz) → ¬Rxz).
Give examples of relations with each of the following properties: [35]

In all cases, we let the domain = N, the natural numbers.

(i) Equivalence, but not negatively transitive.

The identity relation. This is an equivalence relation with respect to any domain.
Let x = z and ¬x = y. Then ¬Rxy ∧ ¬Ryz but Rxz.

(ii) Reflexive and negatively transitive, but not symmetric.

The relation 6> (‘is not greater than’) will do the trick. This is reflexive with
respect to the domain, since no number is greater than itself. ¬Rxy if and only if
x > y, which is transitive with respect to the domain, so 6> is negatively transitive.
But this relation isn’t symmetric, since 0 6> 1 but 1 > 0.

(iii) Reflexive and symmetric, but not transitive.

Let R = {(x, y)|x = y ∨ x = y + 1 ∨ x+ 1 = y}. This is reflexive since every
number is self-identical, and symmetric, since if x = y + 1 then y + 1 = x and
vice–versa. But it isn’t transitive, since R01 and R12 and ¬R02.

(iv) Transitive and symmetric, but not reflexive.

The let R = ∅. This isn’t reflexive, since there are numbers than don’t bear the
empty relation to themselves. But the conditions for symmetry and transitivity are
universal generalisations, which are trivially satisfied by the empty relation.

(v) Transitive, but neither symmetric nor negatively transitive.

Let R = {(0, 2)}. This relation is somewhat gerrymandered, but it works. R
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is transitive; since no counterexample can be constructed as exactly one instance
of the relation holds. It isn’t symmetric, since (2, 0) 6∈ R, and it isn’t negatively
transitive either, since ¬R01 and ¬R12 but R02.

4. Attempt all parts of this question.

(a) Define the terms: Field, event space, conditional probability. [10]

F = P(V )
V = the set of possible outcomes of a given trial.
Pr(A|B) = Pr(A∩B)

Pr(B)

(B) You are held captive in the Bayesian Republic of Zembla. The gaoler places
two bullets in consecutive chambers in a six-chambered revolver, spins the wheel,
and takes a shot at you. You are in luck: the camber was empty! The gaoler then
decides he will take a second shot. However, he decides to let you choose between
the following options: either he will fire from the next chamber, or he will spin the
chamber again and then fire. Which should you choose and why? [15]

We’ll assume that if a round is chambered in a given cylinder, the gaoler will not
miss. Label the cylinders of the revolver clockwise 1 through 6. We know that
the bullets are in consecutive cylinders, so the set of possible loading configurations
= {{1, 2} , {2, 3} , {3, 4} , {4, 5} , {5, 6} , {6, 1}}. Further assuming that the Gaoler’s
spin is fair each time, the probability of you getting shot if you choose the gaoler’s
second option, is 1

3
: Given that you were missed the first time, there are two bullets

left in the revolver. There are 6 × 6 = 36 possible outcomes (6 possibilities for
the chamber fired, and 6 configurations of loading). 12 of these are lethal, since
whichever chamber is fired, two of the six loading configurations will result in you
getting shot.

We’ll proceed by calculating the odds of getting shot after choosing the first option.
Assume that the chamber 1 is fired first. Given that you were missed on the first
shot, only four loading configurations are compatible with our information, namely
that the following chambers of the revolver are loaded: {2, 3} , {3, 4} , {4, 5} , {5, 6}.
In one of these outcomes, taking the gaoler’s first option will result in you being
shot, namely if chambers 2 and 3 are loaded. Likewise for the scenarios in which
each of the other five chambers is emptied first. So there are 24 possible outcomes,
of which 6 are lethal. In other words, the probability of getting shot on the gaoler’s
first option is 1

4
.

As 1
4
< 1

3
, if you don’t want to get shot, you should take the second option.

(c) One octopus in every 100 is psychic. Psychic octopoi have perfect knowledge of
the results of future football tournaments. Non-psychic octopoi can only guess ran-
domly. Paul, a randomly chosen octopus, correctly predicts the winner of the next
(football) World Cup, from the 32 teams that qualified. What is the probability
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that Paul is Psychic? [25]

Let ‘H’ mean that Paul is psychic. Let ‘E’ mean that Paul has selected the winning
football team. To answer this question, we’ll plug the values we’ve been given into:

Bayes’s Theorem: Pr(H|E) = (Pr(E|H)Pr(H))
((PrE|H)Pr(H))+(Pr(E|¬H)Pr(¬H))

We know that Pr(E|H) = 1, since psychic octopoi are right every time; that
Pr(H) = 0.01 and Pr(¬H) = 0.99, since only one in a hundred octopoi are psychic;
and that Pr(E|¬H) = 1

32
, since non-psychic octopoi pick a team at random. So

Bayes’s theorem tells us that:

Pr(H|E) = 0.01
0.01+( 1

32
×0.99) = 0.01

0.01+ 99
3200

= 0.01
( 131
3200

)
≈ 0.24

(d) I choose three different numbers, at random, from the (whole) numbers between
1 and 4 (inclusive). What is the probability that my choices are in increasing (not
necessarily consecutive numerical order? [15]

Given that we are choosing three times without replacement from an initial selection
of four, there are (4 × 3 × 2) = 24 sequences that we might select. How many of
these are in increasing numerical order? There are 0 such sequences the first choice
of which is 4 or 3. If the first choice is 2, then the sequence (2, 3, 4) is the only
acceptable sequence. If our first pick is 1, then the sequences (1, 2, 3), (1, 2, 4),
and (1, 3, 4) are the only acceptable sequences. Therefore, four sequences satisfy
the condition of being in increasing numerical order. Assuming that our selection is
random and fair, then, the odds of picking such a sequence are 4

24
= 1

6
.

(e) I choose three different numbers, at random, from the (whole) numbers between
1 and 10 (inclusive). What is the probability that they are in increasing (not neces-
sarily consecutive) numerical order?

In this case there are (10 × 9 × 8) = 720 combinations that we might pick, so we
can’t work through the cases manually. However, if the first number in the sequence
is n, then there are 10 − n possible second places which are larger than our first
pick. Similarly, if our second pick is m, there are 10−m possible selections of third
place which will satisfy the condition of increasing numerical order. Exploiting the
similarity between this relationship and the triangular numbers, we can expect that
the number of acceptable sequences starting with n will be equal to the sum of the
first 10−n numbers (inclusive of 0). Therefore the sum of the first 10 such sums will
be the number of sequences satisfying the condition of increasing numerical order.
More formally, our answer equals:

10∑
m=1

(
(10−m)∑
n=0

n ∈ N
)
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Working through this, we have:

36 (0+1+2+3+4+5+6+7+8)
+28 (0+1+2+3+4+5+6+7)
+21 (0+1+2+3+4+5+6)
+15 (0+1+2+3+4+5)
+10 (0+1+2+3+4)
+6 (0+1+2+3)
+3 (0+1+2)
+1 (0+1)
+0 (unary sum of 0)
+0 (nullary sum)
= 120

Assuming that our selection was fair then, the odds of picking a numerically increas-
ing sequence are 120

720
= 1

6
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