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1. Say whether the following statements are true or false. Explain your 

answers, using examples where appropriate. 
 

(i) If a logic is strongly axiomatizable, it is compact. 
(ii) The property of having a finite domain is definable in first-order logic 

with identity. 
(iii) If a set of sentences of first-order logic without identity is satisfiable, 

then it has a denumerably infinite model. 
(iv) Every decidable, axiomatizable theory is complete. 
(v) Every axiomatizable, complete theory is decidable. 

 
2. ‘The natural framework for iterative set theory is second-order logic. But if 

the first-order variables range over all sets, then an instance of second-
order comprehension says that there is a universal set, whereas iterative 
set theory says there is no such thing.’ Solve this problem.  

 
3. Explain why first-order Peano Arithmetic and first-order Complete 

Arithmetic have non-standard models, and why second-order Peano 
Arithmetic on its standard (full) semantics does not. Does this make 
second-order Peano Arithmetic a better theory? 

 
4. What are the axioms of replacement and choice? Should we believe them? 
 
5. Does set theory supply a foundation for mathematics? Does it need one? 
 
6. Argue that every primitive recursive function is computable. Using a 

diagonal argument, show that there are computable functions that are not 
primitive recursive. Does a similar argument show that there are 
computable functions that are not recursive? 

 
7. ‘The Löwenheim-Skolem theorems have no philosophical significance 

whatever.’ Discuss. 
 
8. Does Gödel’s second incompleteness theorem have any philosophical 

significance beyond that of his first incompleteness theorem? 
 
9. EITHER: (a) Show that the set of numbers of the theorems of first-order 

Peano Arithmetic is not primitive recursive (assuming a primitive recursive 
numbering of the formulas of the theory’s language). 

 
  OR: (b) We can prove a completeness theorem for axiomatized first-order 

logic. So why can’t we apply the same techniques to prove, contrary to 
Gödel’s result, a completeness theorem for first-order logic extended with 
the first-order Peano axioms? 

 
10. Sketch a proof of Tarski’s theorem. What is its philosophical significance? 
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