Model answers are in blue. In some cases, multiple answers are acceptable. Any student who thinks they have spotted a mistake in a model answer should email tecb2 at cam dot ac dot uk

SECTION A

Answer all questions in section A.
(1) Could there be:
(a) a valid argument with a true conclusion but a false premise?

Yes. For example:
Socrates is a man and a carrot.
So: Socrates is a man.
(b) a valid argument with only false premises and a false conclusion?

Yes. For example:
Socrates is a man and a carrot.
So: Socrates is a carrot.
(c) a sound argument whose conclusion is a tautology?

Yes. For example:
It is raining.
So: Either it is raining or it is not raining.
(d) a sound argument with a contradiction as a premise?

No. By definition, an argument is sound iff it is valid and all its premises are true.
So, in particular, every premise of a sound argument is true. And no contradiction is true.
If so, provide an example of such an argument. If not, explain why not.
(2) Use truth-tables (complete or partial) to assess the following:
(a) $A \vee B, B \vee C, \neg A \vDash B \wedge C$

This claim is false, as the following partial truth table shows.

$$
\begin{array}{ccc|ccc|c}
A & B & C & A \vee B & B \vee C & \neg A & B \wedge C \\
\hline F & T & F & T & T & T & F
\end{array}
$$

(b) $(\neg A \leftrightarrow B) \vDash \neg(\neg A \leftrightarrow \neg B)$

This claim is true, as the following complete truth table shows.

A	B	$(\neg A$	\leftrightarrow	$B)$	$\neg($	$\neg A$	\leftrightarrow	$\neg B)$
T	T	f	F		F	f	t	f
T	F	f	T		T	f	f	t
F	T	t	T		T	t	f	f
F	F	t	F		F	t	t	t

(c) $\vDash(A \rightarrow B) \vee(B \rightarrow A)$

This claim is true, as the following complete truth table shows.

A	B	$(A \rightarrow B)$	\vee	$(B \rightarrow A)$
T	T	t	T	t
T	F	f	T	t
F	T	t	T	f
F	F	t	T	t

(3) Using the formal proof system from forallx, show that:
$\forall x(F x \rightarrow G x), \exists x(F x \wedge H x) \vdash \exists x(G x \wedge H x)$

1	$\forall x(F x \rightarrow G x)$	
2	$\exists x(F x \wedge H x)$	
3	$\mathrm{Fa} \wedge \mathrm{Ha}$	
4	Fa	$\wedge \mathrm{E} 3$
5	Ha	$\wedge \mathrm{E} 3$
6	$\mathrm{Fa} \rightarrow \mathrm{Ga}$	$\forall \mathrm{E} 1$
7	Ga	$\rightarrow \mathrm{E}$ 6, 4
8	$\mathrm{Ga} \wedge \mathrm{Ha}$	\wedge I 7, 5
9	$\exists x(G x \wedge H x)$	ヨI 8
10	$\exists x(G x \wedge H x)$	ヨE 2, 3-9

(4) Provide examples of relations with the following properties:
(a) reflexive and symmetric but not transitive The relation, on the domain of people, given by: x and y are the same height or differ in height by no more than 10 cm .
(b) transitive and symmetric but not reflexive The empty relation (on any domain).
(c) reflexive but neither symmetric nor transitive The relation on the numbers 1,2 , and 3 whose extension is: $\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 1,2\rangle,\langle 2,3\rangle,\langle 3,1\rangle$.
(5) You roll two fair six-sided dice, once. Calculate the probability that:
(a) you roll 11 .

$$
\frac{2}{36}=\frac{1}{18}
$$

(b) you roll 11, given that at least one of the dice showed a 6.

$$
\frac{2}{11}
$$

(c) you roll 11, given that both dice show the same number.

SECTION B

Answer any two questions from section B.
(6) Using the following symbolisation key:

Domain: people
D: \qquad is a drummer
B: \qquad is a bassist

L: \qquad ${ }_{1}$ likes \qquad
a: Ali
b: Barker
symbolise all of the following English sentences as best you can in FOL:
(a) Ali likes Barker, and also other people.
$L a b \wedge \exists x(\neg x=b \wedge L a x)$
(b) Every bassist likes a drummer.
$\forall x(B x \rightarrow \exists y(D y \wedge L x y))$.
Note: the original English sentence is potentially ambiguous; I have given it a reading which allows (for example) that different bassists may like different drummers.
(c) The drummer who likes Ali is not Barker.
$\exists x(D x \wedge L x a \wedge \forall y((D y \wedge L y a) \rightarrow x=y) \wedge \neg x=b)$
(d) Provided Ali likes Barker, some bassist likes some drummer.
$L a b \rightarrow \exists x \exists y(B x \wedge D y \wedge L x y)$
(e) Exactly two drummers other than Barker like Ali.
$\exists x \exists y(\neg x=y \wedge \neg x=b \wedge \neg y=b \wedge D x \wedge D y \wedge L x a \wedge L y a \wedge$

$$
\forall z[(D z \wedge L z a) \rightarrow(z=x \vee z=y)])
$$

Note: the original English sentence may be intended to imply that Barker is a drummer who likes Ali. If so, then we should offer:
$D b \wedge L b a \wedge \exists x \exists y(\neg x=y \wedge \neg x=b \wedge \neg y=b \wedge D x \wedge D y \wedge L x a \wedge L y a \wedge$

$$
\forall z[(D z \wedge L z a) \rightarrow(z=x \vee z=y \vee z=b)])
$$

(f) The drummer who likes Ali is not the bassist who likes Barker.
$\exists x \exists y(D x \wedge L x a \wedge \forall z((D z \wedge L z a) \rightarrow x=z) \wedge$

$$
B y \wedge L y b \wedge \forall z((B z \wedge L z b) \rightarrow y=z) \wedge x \neq y)
$$

(g) Barker likes each of the three bassists.

$$
\begin{aligned}
& \exists x \exists y \exists z(B x \wedge B y \wedge B z \wedge \neg x=y \wedge \neg y=z \wedge \neg x=z \wedge \\
& \quad \forall w[B w \rightarrow(x=w \vee y=w \vee z=w)] \wedge L b x \wedge L b y \wedge L b z)
\end{aligned}
$$

(h) For every drummer who likes a bassist, some other drummer likes no one but Ali.
$\forall x([D x \wedge \exists y(B y \wedge L x y)] \rightarrow \exists z[D z \wedge \neg z=x \wedge \forall y(L z y \rightarrow y=a)])$
Note: the original English sentence may be intended so that its last part is read
'... likes Ali but no one other than Ali'. If so, the conditional in my answer, ' $L z y \rightarrow$ $y=a$ ', should be changed to a biconditional, ' $L z y \leftrightarrow y=a$ '
(i) Someone who is liked by nobody likes everyone.
$\exists x(\forall y \neg L y x \wedge \forall z L x z)$
Note: the original English sentence may be intended to be read e.g. '... likes everyone other than themselves'. If so, the answer should be $\exists x(\forall y \neg L y x \wedge \forall z(\neg z=x \rightarrow L x z))$
(j) Someone likes all and only those who do not like themselves.
$\exists x \forall y(L x y \leftrightarrow \neg L y y)$.
(7) Grange Knoll is a school with a population of 800 children and 200 adults. Sadly, 40 children and 40 adults in Grange Knoll have the flu. A member of the Grange Knoll is chosen at random; calculate the probability that:
In all answers, let C be the event of being/sampling a child and F be the event of being/sampling someone with flu. (Note that \bar{C} is the event of being/sampling an adult.)
(a) they have the flu.

$$
\operatorname{Pr}(F)=\frac{40+40}{800+200}=\frac{2}{25}
$$

(b) they have the flu, given that they are a child.

$$
\operatorname{Pr}(F \mid C)=\frac{40}{800}=\frac{1}{20}
$$

(c) they have the flu, given that they are an adult.

$$
\operatorname{Pr}(F \mid \bar{C})=\frac{40}{200}=\frac{1}{5}
$$

(d) they are a child, given that they have the flu.

$$
\operatorname{Pr}(C \mid F)=\frac{40}{80}=\frac{1}{2}
$$

(e) they are an adult, given that they do not have the flu.

$$
\operatorname{Pr}(\bar{C} \mid \bar{F})=\frac{160}{920}=\frac{4}{23}
$$

A test has been developed, to determine whether or not someone has the flu. Among those who have the flu, the test delivers a positive verdict 95% of the time. Among those who do not have the flu, the test delivers a positive verdict 5% of the time. A member of Grange Knoll is chosen at random; calculate the probability that:
In all subsequent answers, let V be the event of the test returning a positive verdict.
(f) they have the flu, given that the test delivered a positive verdict

$$
\begin{aligned}
\operatorname{Pr}(F \mid V) & =\frac{\operatorname{Pr}(F \wedge V)}{\operatorname{Pr}(V)} \\
& =\frac{\operatorname{Pr}(F \wedge V)}{\operatorname{Pr}(F \wedge V)+\operatorname{Pr}(\bar{F} \wedge V)} \\
& =\frac{\frac{2}{25} \times \frac{19}{20}}{\frac{2}{25} \times \frac{19}{20}+\frac{23}{25} \times \frac{1}{20}}, \text { using the answer to (a) } \\
& =\frac{2 \times 19}{2 \times 19+23 \times 1} \\
& =\frac{38}{61}
\end{aligned}
$$

(g) they have the flu, given both that they are a child and that the test delivered a positive verdict

$$
\begin{aligned}
\operatorname{Pr}(F \mid(C \wedge V)) & =\frac{\operatorname{Pr}(F \wedge C \wedge V)}{\operatorname{Pr}(C \wedge V)} \\
& =\frac{\operatorname{Pr}(F \wedge C \wedge V)}{\operatorname{Pr}(F \wedge C \wedge V)+\operatorname{Pr}(\bar{F} \wedge C \wedge V)} \\
& =\frac{\frac{40}{1000} \times \frac{19}{20}}{\frac{40}{1000} \times \frac{19}{20}+\frac{760}{1000} \times \frac{1}{20}} \\
& =\frac{40 \times 19}{40 \times 19+760 \times 1} \\
& =\frac{1}{2}
\end{aligned}
$$

(h) they are an adult, given that the test delivered a positive verdict

$$
\begin{aligned}
\operatorname{Pr}(\bar{C} \mid V) & =\frac{\operatorname{Pr}(\bar{C} \wedge V)}{\operatorname{Pr}(V)} \\
& =\frac{\operatorname{Pr}(\bar{C} \wedge F \wedge V)+\operatorname{Pr}(\bar{C} \wedge \bar{F} \wedge V)}{\operatorname{Pr}(V \wedge F)+\operatorname{Pr}(V \wedge \bar{F})} \\
& =\frac{\frac{40}{1000} \times \frac{19}{20}+\frac{160}{1000} \times \frac{1}{20}}{\frac{19}{20} \times \frac{2}{25}+\frac{1}{20} \times \frac{23}{25}}, \text { calculating denominator as in }(\mathrm{f}) \\
& =\frac{1 \times 19+4 \times 1}{19 \times 2+1 \times 23} \\
& =\frac{23}{61}
\end{aligned}
$$

(8) Using the formal proof system from forallx, show each of the following:
(a) $\forall x \exists y(R x y \vee R y x), \forall x \neg R m x \vdash \exists x R x m$

1	$\forall x \exists y(R x y \vee R y x)$	
2	$\forall x \neg R m x$	
3	$\exists y(R m y \vee R y m)$	$\forall \mathrm{E} 1$
4	Rma \vee Ram	
5	\neg Rma	$\forall E 2$
6	Ram	DS 4, 5
7	$\exists x$ Rxm	习I 6
8	$\exists x \mathrm{Rxm}$	ЭE 3, 4-7

(b) $\forall x(\exists y L x y \rightarrow \forall z L z x)$, Lab $\vdash \forall x L x x$

1	$\forall x(\exists y L x y \rightarrow \forall z L z x)$	
2	$L a b$	
3	$\exists y L a y \rightarrow \forall z L z a$	$\forall \mathrm{E} 1$
4	$\exists y L a y$	$\exists \mathrm{I} 2$
5	$\forall z L z a$	$\rightarrow \mathrm{E} 3,4$
6	$L c a$	$\forall \mathrm{E} 5$
7	$\exists y L c y$	$\exists \mathrm{I} 6$
8	$\exists y L c y \rightarrow \forall z L z c$	$\forall \mathrm{E} 1$
9	$\forall z L z c$	$\rightarrow \mathrm{E} 8,7$
10	$L c c$	$\forall \mathrm{E} 9$
11	$\forall x L x x$	$\forall \mathrm{I} 10$

(c) $\forall x((P x \wedge \exists y L y x) \rightarrow D x), \forall x(D x \rightarrow \neg \exists y L y x) \vdash \forall x(P x \rightarrow \neg \exists y L y x)$

1	$\forall x((P x \wedge \exists y L y x) \rightarrow$ Dx $)$	
2	$\forall x(D x \rightarrow \neg \exists y L y x)$	
3	Pa	
4	JyLya	
5	$\mathrm{Pa} \wedge \exists y \mathrm{Lya}$	$\rightarrow \mathrm{I} 3,4$
6	$(P a \wedge \exists y L y a) \rightarrow$ Da	$\forall \mathrm{E} 1$
7	Da	\rightarrow E 6, 5
8	$D a \rightarrow \neg \exists y L y a$	$\forall \mathrm{E} 2$
9	$\neg \exists y L y a$	$\rightarrow \mathrm{E} 8,7$
10	\perp	$\neg \mathrm{E} 4,9$
11	$\neg \exists y L y a$	$\neg \mathrm{I} 4-10$
12	$\mathrm{Pa} \rightarrow \neg \exists \mathrm{yLya}$	\rightarrow I 3-11
13	$\forall x(P x \rightarrow \neg \exists y L y x)$	$\forall \mathrm{I} 12$

(d) $\forall x(\operatorname{Lax} \rightarrow \forall y(\operatorname{Lay} \rightarrow x=y)), \neg P c \vdash L a c \rightarrow \forall x(\operatorname{Lax} \rightarrow \neg P x)$

(e) $\forall x(\neg M x \vee \operatorname{Lax}), \forall x(C x \rightarrow \operatorname{Lax}), \forall x(M x \vee C x) \vdash \forall x \operatorname{Lax}$

1	$\forall x(\neg M x \vee L a x)$	
2	$\forall x(C x \rightarrow L a x)$	
3	$\forall x(M x \vee C x)$	
4	\neg Mc \vee Lac	$\forall \mathrm{E} 1$
5	$\mathrm{Cc} \rightarrow$ Lac	$\forall \mathrm{E} 2$
6	$\mathrm{Mc} \vee \mathrm{Cc}$	$\forall \mathrm{E} 3$
7	\neg Lac	
8	\neg Mc	DS 4,7
9	Cc	DS 6, 8
10	Lac	$\rightarrow \mathrm{E} 5,9$
11	\perp	\neg E 7, 10
12	$\neg \neg$ Lac	$\neg \mathrm{I} 7$-11
13	Lac	DNE 12

(f) $\forall x(\operatorname{Lax} \rightarrow x=a), \forall x(\exists y L x y \rightarrow x=a) \vdash \forall x(\exists y L y x \rightarrow x=a)$

1 2	$\begin{aligned} & \forall x(\operatorname{Lax} \rightarrow x=a) \\ & \forall x(\exists y L x y \rightarrow x=a) \end{aligned}$	
3	$\exists y L y d$	
4	Led	
5	$\exists y L e y$	ヨI 4
6	$\exists y L e y \rightarrow e=a$	$\forall \mathrm{E} 2$
7	$e=a$	$\rightarrow \mathrm{E} 6,5$
8	Lad	=E 7, 4
9	Lad	ЭE 3, 4-8
10	$\operatorname{Lad} \rightarrow d=a$	$\forall \mathrm{E} 1$
11	$d=a$	\rightarrow E 10, 9
12	$\exists y L y d \rightarrow d=a$	$\rightarrow \mathrm{I} 3-11$
13	$\forall x(\exists y L y x \rightarrow x=a)$	$\forall \mathrm{I} 12$

(9) Attempt all parts of this question
(a) Let $A=\{$ Algeria, Benin, Chad $\}, B=\{$ Benin, Chad $\}, C=\{$ Chad, Djibouti, Egypt $\}$, and $D=\{$ Fiji $\}$. Calculate the members of each of the following sets:
(i) $(B-C) \cup D$

$$
\begin{aligned}
(B-C) \cup D & =\{\text { Benin }\} \cup\{\mathrm{Fiji}\} \\
& =\{\text { Benin, } \mathrm{Fiji}\}
\end{aligned}
$$

(ii) $(A \cap B) \cup(C \cap D)$

$$
\begin{aligned}
(A \cap B) \cup(C \cap D) & =\{\text { Benin, Chad }\} \cup \varnothing \\
& =\{\text { Benin, Chad }\}
\end{aligned}
$$

(iii) $A \times B$

$$
\begin{aligned}
A \times B= & \{\langle\text { Algeria, Benin }\rangle,\langle\text { Algeria, Chad }\rangle,\langle\text { Benin, Benin }\rangle,\langle\text { Benin, Chad }\rangle, \\
& \langle\text { Chad, Benin }\rangle,\langle\text { Chad, Chad }\rangle\}
\end{aligned}
$$

(iv) $\{x: x \subseteq A \cap B)$

$$
\begin{aligned}
\{x: x \subseteq A \cap B\} & =\{x: x \subseteq\{\text { Benin, Chad }\}\} \\
& =\{\varnothing,\{\text { Benin }\},\{\text { Chad }\},\{\text { Benin }, \text { Chad }\}\}
\end{aligned}
$$

(v) $\wp(B \cap C)$

$$
\begin{aligned}
\wp(B \cap C) & =\wp(\{\text { Chad }\}) \\
& =\{\varnothing,\{\text { Chad }\}\}
\end{aligned}
$$

(vi) $\wp(\wp(C \cap D))$

$$
\begin{aligned}
\wp(\wp(C \cap D)) & =\wp(\wp(\varnothing)) \\
& =\wp(\{\varnothing\}) \\
& =\{\varnothing,\{\varnothing\}\}
\end{aligned}
$$

(vii) $(A-C) \times D$

$$
\begin{aligned}
(A-C) \times D & =\{\text { Algeria, Benin }\} \times\{\text { Fiji }\} \\
& =\{\langle\text { Algeria, Fiji }\rangle,\langle\text { Benin, Fiji }\rangle\}
\end{aligned}
$$

(viii) $\beta(B-C) \times \beta(D)$

$$
\begin{aligned}
\wp(B-C) \times \wp(D) & =\wp(\{\text { Benin }\}) \times \wp(\{\text { Fiji }\}) \\
& =\{\varnothing,\{\text { Benin }\}\} \times\{\varnothing,\{\text { Fiij }\}\} \\
& =\{\langle\varnothing, \varnothing\rangle,\langle\varnothing,\{\text { Fiji }\}\rangle,\langle\{\text { Benin }\}, \varnothing\rangle,\langle\{\text { Benin }\},\{\text { Fiji }\}\rangle\}
\end{aligned}
$$

(b) Is there any set A such that $\wp(A)=\varnothing$? If so, give an example; if not, explain why not. There is no such set. After all, $\varnothing \subseteq A$ and hence $\varnothing \in \wp(A)$, for any set A.
(c) Show that $A-(C-A)=A$, no matter what sets A and C are.

First, suppose that $x \in A-(C-A)$, i.e. $x \in A$ but $x \notin(C-A)$. So in particular, $x \in A$. Generalising on x, this shows that $A-(C-A) \subseteq A$.
Next, suppose that $x \in A$. Then $x \notin C-A$. So $x \in A-(C-A)$. Generalising on x, this shows that $A \subseteq A-(C-A)$.
By Extensionality, it follows that $A=A-(C-A)$.

