RUBRIC

Time allowed: 2 hours

Answer **all** questions in Section A. Each question in Section A is worth 9 marks. Answer **two** questions from Section B. Each question in Section B is worth 20 marks.

Write the number of the question at the beginning of each answer.

SECTION A

Answer all questions in section A.

- (1) Could there be:
 - (a) a valid argument with a true conclusion but a false premise?
 - (b) a valid argument with only false premises and a false conclusion?
 - (c) a sound argument whose conclusion is a tautology?
 - (d) a sound argument with a contradiction as a premise?

If so, provide an example of such an argument. If not, explain why not.

- (2) Use truth-tables (complete or partial) to assess the following:
 - (a) $A \vee B, B \vee C, \neg A \models B \wedge C$
 - (b) $(\neg A \leftrightarrow B) \vDash \neg (\neg A \leftrightarrow \neg B)$
 - (c) $\models (A \rightarrow B) \lor (B \rightarrow A)$
- (3) Using the formal proof system from *forallx*, show that:

$$\forall x(Fx \to Gx), \exists x(Fx \land Hx) \vdash \exists x(Gx \land Hx)$$

- (4) Provide examples of relations with the following properties:
 - (a) reflexive and symmetric but not transitive
 - (b) transitive and symmetric but not reflexive
 - (c) reflexive but neither symmetric nor transitive
- (5) You roll two fair six-sided dice, once. Calculate the probability that:
 - (a) you roll 11.
 - (b) you roll 11, given that at least one of the dice showed a 6.
 - (c) you roll 11, given that both dice show the same number.

SECTION B

Answer any two questions from section B.

(6) Using the following symbolisation key:

Domain: people

D: _____ is a drummer

B: _______ is a bassist

L: _____1 likes _____2

a: Ali

b: Barker

symbolise all of the following English sentences as best you can in FOL. Comment on any difficulties you encounter:

- (a) Ali likes Barker, and also other people.
- (b) Every bassist likes a drummer.
- (c) The drummer who likes Ali is not Barker.
- (d) Provided Ali likes Barker, some bassist likes some drummer.
- (e) Exactly two drummers other than Barker like Ali.

- (f) The drummer who likes Ali is not the bassist who likes Barker.
- (g) Barker likes each of the three bassists.
- (h) For every drummer who likes a bassist, some other drummer likes no one but Ali.
- (i) Someone who is liked by nobody likes everyone.
- (j) Someone likes all and only those who do not like themselves.
- (7) Grange Knoll is a school with a population of 800 children and 200 adults. Sadly, 40 children and 40 adults in Grange Knoll have the flu. A member of the Grange Knoll is chosen at random; calculate the probability that:
 - (a) they have the flu.
 - (b) they have the flu, given that they are a child.
 - (c) they have the flu, given that they are an adult.
 - (d) they are a child, given that they have the flu.
 - (e) they are an adult, given that they do not have the flu.

A test has been developed, to determine whether or not someone has the flu. Among those who have the flu, the test delivers a positive verdict 95% of the time. Among those who do not have the flu, the test delivers a positive verdict 5% of the time. A member of Grange Knoll is chosen at random; calculate the probability that:

- (f) they have the flu, given that the test delivered a positive verdict
- (g) they have the flu, given both that they are a child and that the test delivered a positive verdict
- (h) they are an adult, given that the test delivered a positive verdict
- (8) Using the formal proof system from *forallx*, show each of the following:
 - (a) $\forall x \exists y (Rxy \lor Ryx), \forall x \neg Rmx \vdash \exists x Rxm$
 - (b) $\forall x (\exists y Lxy \rightarrow \forall z Lzx), Lab \vdash \forall x Lxx$
 - (c) $\forall x ((Px \land \exists y Lyx) \rightarrow Dx), \forall x (Dx \rightarrow \neg \exists y Lyx) \vdash \forall x (Px \rightarrow \neg \exists y Lyx)$
 - (d) $\forall x(Lax \rightarrow \forall y(Lay \rightarrow x = y)), \neg Pc \vdash Lac \rightarrow \forall x(Lax \rightarrow \neg Px)$
 - (e) $\forall x (\neg Mx \lor Lax), \forall x (Cx \to Lax), \forall x (Mx \lor Cx) \vdash \forall x Lax$
 - (f) $\forall x(Lax \rightarrow x = a), \forall x(\exists yLxy \rightarrow x = a) \vdash \forall x(\exists yLyx \rightarrow x = a)$
- (9) Attempt all parts of this question
 - (a) Let $A = \{Algeria, Benin, Chad\}$, $B = \{Benin, Chad\}$, $C = \{Chad, Djibouti, Egypt\}$, and $D = \{Fiji\}$. Calculate the members of each of the following sets:
 - (i) $(B-C)\cup D$
 - (ii) $(A \cap B) \cup (C \cap D)$
 - (iii) $A \times B$
 - (iv) $\{x: x \subseteq A \cap B\}$
 - (v) $\mathcal{P}(B \cap C)$
 - (vi) $\mathcal{P}(\mathcal{P}(C \cap D))$
 - (vii) $(A C) \times D$
 - (viii) $\mathcal{P}(B-C) \times \mathcal{P}(D)$
 - (b) Is there any set A such that $\mathcal{P}(A) = \emptyset$? If so, give an example; if not, explain why not.
 - (c) Show that $A \setminus (C \setminus A) = A$, no matter what sets A and C are.