PHILOSOPHY TRIPOS Part II

Tuesday 7 June $2005 \quad 9$ to 12

Paper 7
MATHEMATICAL LOGIC
Answer three questions only.
Write the number of the question at the beginning of each answer. If you are answering an either/or question, indicate the letter as well.

STATIONERY REQUIREMENTS
20 Page Answer Book x 1
Rough Work Pad

You may not start to read the questions
printed on the subsequent pages of this question paper until instructed that you may do so by the Invigilator

1 Should the notions of proof and deduction be decidable? Should a logic be axiomatisable? Should a logic be decidable?

2 Using examples, explain the notions of non-standard model and categorical theory. Describe a non-standard model for first-order Peano Arithmetic. Is its existence important?

3 Either (a) Is the notion of computability vague? Explain the significance of your answer.

Or (b) Outline a proof that every recursive function is

 Turing-computable.4 Either (a) Do Gödel's incompleteness theorems show that meaning isn't use?

Or (b) Does Gödel's first incompleteness theorem show that the mind is not a finite machine?

5 Explain and illustrate the relevance of the following ideas to Gödel's first incompleteness theorem:
(a) a beta-function;
(b) omega-consistency;
(c) omega-incompleteness.

6 What reasons are there to believe the set-theoretic axioms of extensionality, infinity and choice? Does it matter if there are different reasons for different axioms?
$7 \quad$ 'Arithmetic is more certain than set theory. So reducing arithmetic to set theory is pointless.' Discuss.

8 Is Hilbert's programme completely undermined by Gödel's incompleteness theorems?

9 What does Gentzen's proof of the consistency of arithmetic tell us?
10 Is there a problem in using second-order quantifiers which are interpreted as quantifying over all arbitrary subsets of infinite domains?

