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One of Michael Dummett’s most striking contributions to the philosophy of
mathematics is an argument to show that the correct logic to apply in math-
ematical reasoning is not classical but intuitionistic. In this article I wish to
cast doubt on Dummett’s conclusion by outlining an alternative, motivated by
consideration of a well-known result of Kurt Gödel, to the standard view of the
relationship between classical and intuitionistic arithmetic. I shall suggest that
it is hard to find a perspective from which to arbitrate between the competing
views. Let me start, then, by stating the standard view of the relationship, with
which the account I shall be canvassing is to be contrasted.

1 The standard view
Although some of what I shall be saying can be applied to areas of mathemat-
ics other than the arithmetic of the natural numbers, much of it depends on a
feature of arithmetic that is not readily generalizable, namely that its atomic
sentences are decidable. It will therefore simplify matters greatly to restrict our
attention solely to the arithmetical case. The relationship between classical and
intuitionistic mathematics in general is complicated by the fact that the intu-
itionistic version results from the application of two competing principles, one
limitative and one permissive. The limitative principle, which Brouwer called
the ‘first act of intuitionism’, is the one that limits logic by making the infer-
ence from ¬¬φ to φ generally invalid. The permissive principle, which Brouwer
called the ‘second act of intuitionism’, allows a conception of the continuum by
means of free choice sequences. But in the case of arithmetic the permissive
principle gets no grip and only the limitative principle is applicable. So accord-
ing to the standard way of viewing matters intuitionistic arithmetic is a proper
fragment of classical arithmetic. When they are laid out formally, both theories
are stated in the same language, containing the usual logical constants and the
standard apparatus of arithmetic (signs for primitive recursive functions such
as successorhood, addition and multiplication). They have, moreover, the same
mathematical axioms (defining equations for the primitive recursive functions,
and all the instances of the induction schema that are stateable in the formal
language). Where the two theories differ is solely in their logical rules. The
classical theory (Peano Arithmetic or PA) admits, and the intuitionistic theory
(Heyting Arithmetic or HA) rejects, a rule which licenses the inference from
¬¬φ to φ for an arbitrary sentence φ. So on this view every correct proof in
HA is a correct proof in PA; but the converse fails. The central case is one in
which we have proved a contradiction from the assumption that (∀x)φ(x). We
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can then conclude ¬(∀x)φ(x), which is (intuitionistically as well as classically)
equivalent to ¬¬(∃x)φ(x). But the intuitionist will not in general accept the
further step to the conclusion that (∃x)φ(x), because he interprets that as a
claim to have a method which will (in principle, at least) determine a number n
such that φ(n), and merely knowing the absurdity of (∀x)φ(x) does not in itself
provide us with such a method. So on this view classical arithmetic is stated in
the same language and has the same axioms as intuitionistic arithmetic, but it
has more theorems because it uses a stronger logic.

But if PA is in this sense stronger than HA, it is not riskier. Suppose that
we define the negative translation φ∗ of an arithmetical sentence φ recursively
as follows:

(α = β)∗ =Df α = β (α 6= β)∗ =Df α 6= β

(φ ∧ ψ)∗ =Df φ
∗ ∧ ψ∗ (φ ∨ ψ)∗ =Df ¬(¬φ∗ ∧ ¬ψ∗)

((∀x)φ(x))∗ =Df (∀x)(φ(x))∗ ((∃x)φ(x))∗ =Df ¬(x)¬(φ(x))∗

(¬φ)∗ =Df ¬φ∗

This translation is due to Gödel, who showed in 1933 that PA ` φ if and only
if HA ` φ∗. The significance of this is that if PA were contradictory there
would be a sentence φ such that PA ` φ and PA ` ¬φ, but then HA ` φ∗ and
HA ` (¬φ)∗, i.e. HA ` ¬φ∗, so that HA would be contradictory too. Hence if
HA is consistent, PA is also consistent: whatever else the merits of intuitionism
may be, it does not buy us security from contradiction.

Now Gödel’s own comment on the significance of this result was that it

shows that the system of intuitionistic arithmetic and number the-
ory is only apparently narrower than the classical one, and in truth
contains it, albeit with a somewhat deviant interpretation.1

Gödel thus conformed to the standard view, according to which the negative
translation does no more than demonstrate the relative consistency result just
stated. The question I shall be concerned with here is whether it really is a
‘deviant interpretation’. The original advocates of intuitionism, Brouwer and
Heyting, could shrug off Gödel’s result because, as Heyting put it, ‘for the
intuitionist this interpretation is the essential thing’.2 They held that language
is always in danger of outrunning the underlying meanings it is trying to express;
an interpretation of one language in another is irrelevant to the consideration
of these underlying meanings themselves.

It is clear that a philosophy that focusses on meaning to the exclusion of the
language by means of which it is communicated is at grave risk of lapsing into
solipsism. This is the objection Dummett has pressed against Brouwer’s route
to intuitionism. He has proposed an alternative route to the first, limitative
part of the intuitionist doctrine (but not to its second, permissive part) which
is concerned precisely with the relationship between language and meaning that
Brouwer wished to ignore. What I shall be suggesting is that if we resist the
temptation to regard the negative translation as deviant we obtain a new per-
spective on the relationship between classical and intuitionistic arithmetic that
gives us reason to question Dummett’s argument.

1?, vol. I, p. 295.
2?, p. 18.
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There is a disagreement between the intuitionist and the classicist as to the
correctness of the disputed rules. But it is commonly said that the meanings of
the logical connectives are given by the rules of proof that they obey: there is
no more to knowing the meaning than is involved in understanding their use in
inferences. If we apply this rule to all the logical rules without restriction, then
we at once reach the conclusion that what the classicist means by the logical
connectives is simply different from what the intuitionist means. This resolves
the dispute between them, but in a rather trivial and unsatisfying manner: the
classicist and the intuitionist not only do not but cannot genuinely disagree,
because they are not even speaking the same language.

This is akin to saying that the Euclidean and hyperbolic geometer disagree
not about the sum of the angles of a triangle but about what ‘triangle’ means.
This view of geometry makes the question about the sum of the angles of a
triangle one that the two geometers cannot coherently discuss. If they both, for
the sake of the discussion, adopt a weaker geometry which is uncommitted on the
matter, they could indeed discuss a verbally identical question, but they would
now be discussing it only in relation to a third meaning of ‘triangle’ that does
not coincide with what either of them understood by the term before. It seems
plain that this view is too holistic by far to be at all plausible. We can insist
that the word ‘triangle’ has the same meaning in the weaker geometry that
it does in Euclidean and in hyperbolic geometry without rendering meanings
wholly mysterious, as long as we admit that only some of the rules for using a
term contribute to its meaning. But as a way of resisting holism this is so far
only programmatic: it is not obvious in general which of the rules for the use of
a term contribute to its meaning and which do not.

By analogy we need not simply leap to the conclusion that the classicist and
the intuitionist are talking past each other. We can instead try to find a minimal
theory which both accept in which the terms of the dispute make sense. But
in doing so we must ensure that we do not prejudge which of the rules for each
logical constant are the ones that give it its meaning.

2 Finitistic arithmetic
For definiteness let us suppose throughout that our arithmetical language in-
cludes symbols for all the primitive recursive functions. Since what is in dispute
is the meanings of the logical connectives, we shall start from the basis of the
system of elementary arithmetic EA, which has as its axioms all instances of the
defining equations for all the primitive recursive functions. All true quantifier-
free equations of the form f(n) = g(n) and inequations of the form f(n) 6= g(n)
are theorems of EA. Since the truth values of all such sentences are mechanically
decidable, we can also without difficulty apply all the propositional connectives
¬,∨,∧,→ to such sentences: we can, if we wish, simply define them truth-
functionally in this context. The theory EA is thus complete and decidable.

Difficulties begin to arise only when we extend this unproblematic theory by
introducing quantifiers. And of course once we do this we have fresh decisions
to make about the interpretation of the propositional connectives to sentences
containing quantifiers: the truth-functional account of them does not suffice to
determine their meaning in cases where it is a matter of doubt whether the
sentences to which they are applied have truth values themselves.
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The first move beyond EA is to allow universal quantification over the nat-
ural numbers. Once we have the ability to generalize, we can define conjunction
inductively by the prescription that

(∀x)φ(x) ∧ (∀y)ψ(y) =Df (∀x)(∀y)(φ(x) ∧ ψ(y)).

I shall take it that this is still unproblematic, since it is accepted not only by
intuitionists and classicists but also by the more liberal finitists.

Notice straightaway that what takes us beyond elementary arithmetic is not
the addition of a new symbol — the universal quantifier — to the language
of arithmetic but the addition to the axioms of all instances of the principle
of mathematical induction containing the new symbol. In a language with the
universal quantifier we can certainly formulate propositions that we could not
formulate before, such as the commutative law for addition

(∀x)(∀y)(x+ y = y + x),

but we are quite unable to prove even such a simple rule as this without using
the principle of mathematical induction. The system of Primitive Recursive
Arithmetic PRA is incomparably more powerful than EA, and the reason is
that it contains as axioms all the instances of the principle of induction that are
formulable in the language.

One might think that it would be a further matter of contention, once we
have adopted a new logical constant, whether to adopt all the instances of
induction that involve it; in practice, though, it never is. All parties to the
disputes that interest us here seem ready to grant without demur that induction
is valid for every instance of it that is meaningful.

Moreover, the introduction and elimination rules that govern the use of the
universal quantifier within arithmetic are the same for the finitist as they are
for the classicist. Only their understanding of the explanation they give of the
meaning of the quantifier is different. All will agree in explaining (∀x)φ(x) as
meaning that there is a method which will produce for any number n as input
a proof that φ(n) as output. But the finitist will take the assertion that there
is a method as amounting to the claim that there is a finitistically acceptable
proof that the method does indeed show that φ(n) in each case.

But if the introduction and elimination rules suffice to fix the meaning of
a logical constant, there cannot be any disagreement between the finitist, the
intuitionist and the classicist as to the meaning of the universal quantifier, since
they all agree as to the introduction and elimination rules that it obeys. Indeed,
if the introduction and elimination rules fix meaning, why is there any need
for these informal explanations at all? A plausible answer to this question is
illustrated by Arthur Prior’s famous ‘tonk’ connective, which has the two rules

P
P tonk Q

P tonk Q
Q

Prior argued,3 that there is no logical constant satisfying these two rules. The
introduction and elimination rules suffice to fix the meaning if any of a purported
logical constant. The role of the informal explanations is to convince us that
there is a meaning there to be fixed.

3?
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3 The negative fragment of intuitionistic arithmetic
The remainder of this paper may be seen as an axtended test of Prior’s doctrine.
Let us consider first how it fares in relation to negation and implication if they
are introduced next. It is at this point that we part company with the finitist,
who professes not to understand these connectives when applied to universal
generalizations over the natural numbers. Notice, though, that it is not the
rules for the connectives that the finitist fails to understand: they are entirely
formal and as finite as any others. What the finitist fails to understand is the
informal explanation the intuitionist gives of the meanings of these connectives.
If we make use of Prior’s way of viewing matters, we may say that what the
finitist doubts is whether there is a logical constant there to be denoted by the
sign ‘¬¬¬’.

I shall discuss this point in more detail at the end of the article. One more
observation is worth making now, though, about negation as the intuitionist
understands it: for formulae in the language currently under consideration the
rule of double negation elimination (from ¬¬¬¬¬¬φ to deduce φ) is intuitionistically
valid. This follows by induction on complexity. The atomic case amounts to no
more than the observation that arithmetical equations are decidable. To prove
the induction step, suppose that ¬¬¬¬¬¬(∀x)φ(x). Then for an arbitrary t we cannot
have ¬¬¬φ(t) since that implies ¬¬¬(∀x)φ(x), which contradicts our hypothesis. So
we must have ¬¬¬¬¬¬φ(t), from which by the induction hypothesis we obtain φ(t).
Since t was arbitrary we deduce that (∀x)φ(x).

The significance of this is that the rule of double negation elimination is the
only one of the classical rules of proof that the intuitionist disputes. So within
the limits of the formal language currently under consideration the classical and
intuitionistic logical rules are identical. It follows that if we define ∨ and ∃ in
the standard (classical) manner by

φ ∨ ψ =Df ¬¬¬(¬¬¬φ ∧¬¬¬ψ)

(∃x)φ(x) =Df ¬¬¬(∀x)¬¬¬φ(x)

we can obtain as derived rules all the classical rules of proof.
This deals with the logic of classical arithmetic; but in order to obtain the

system PA itself we need to extend PRA not merely by adding negation to
its logic but by adopting all the instances of induction formulable using ¬¬¬.
What we then obtain is a formal system easily recognizable as first order Peano
Arithmetic PA.

It should now be clear what the point is of approaching the matter in the
manner we have adopted here: we have obtained classical arithmetic by means
that are at every stage intuitionistically acceptable. In itself this is not news.
What we have done is merely to repackage Gödel’s negative translation, which
already showed that classical arithmetic is consistent if intuitionistic arithmetic
is. But the repackaging prompts a question. Is anything lost in the translation?
If the doctrine presented earlier — that the meaning (if any) of a putative logical
connective is determined by the rules it obeys — is correct, we can give at least a
provisional answer to this question, namely that within the scope of the system
we are currently considering there is no difference between the classical and
intuitionistic readings of what we have set up.

But how significant is this? All we have done so far is to set up a formal
system. The classicist believes that system is consistent because it is sound in
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the standard interpretation; the intuitionist believes it is consistent because it
is sound in the negative translation. But the consistency of a formal system is
not in general all there is to its terms being meaningful. We do not show that
God exists by showing that His existence is consistent. Similarly, one might say,
we do not show that there are the logical constants the classicist claims there
are simply by showing the consistency of a system satisfying the formal rules
the classicist wants.

It is worth noting, though, that the mention of formal systems here does not
quite hit the target. The rules for the logical constants of classical arithmetic are
indeed formalizable; but the axioms are not — at least not completely. (This
is what Gödel’s first incompleteness theorem tells us.) And the intuitionist,
on the understanding of classical practice currently under consideration, can
indeed follow every step of the way in the adoption of the new axioms that
result from Gödel’s theorem. That is to say, the argument by which we show
that the Gödel sentence (∀x)φ(x) of PA is true (because φ(n) is true for each n)
is intuitionistically correct. So the intuitionist should agree with the classicist’s
decision to adopt it as a new axiom. And similarly, of course, for other such
new axioms.

The question nevertheless remains as to whether the intuitionist is under-
standing the classicist correctly. But this cannot be merely a familiar case of
axiomatic formalism: the meaning of the terms in the language of classical
arithmetic cannot be exhausted by the rules of a formal system.

4 The existential fragment of intuitionistic arithmetic
What we showed in the last section is that if we add the intuitionistic constants
¬ and → to the finitistically acceptable theory PRA and adopt all instances
of mathematical induction formulable in that language, we obtain a system
formally indistinguishable from PA. It is worth asking what happens if we add
intuitionistic disjunction and the intuitionistic existential quantifier instead. We
shall denote them ∨∨∨ and ∃∃∃ to distinguish them from their classical counterparts
∨ and ∃, which we have already introduced. The explanation of ∃∃∃xφ(x) is that
there is a method of finding a number n such that φ(n). The explanation of
A∨∨∨B is that either there is a proof of A or there is a proof of B.

The surprising fact is that in that case too we obtain a system formally
indistinguishable from PA. The reason is that the introduction and elimination
rules for ∨∨∨ and ∃∃∃ are the same as those for the classical constants ∨ and ∃. So all
we need to do to obtain classical arithmetic from this fragment of intuitionistic
arithmetic is to define classical negation recursively by the following clauses:

¬(α = β) =Df α 6= β ¬(α 6= β) =Df α = β

¬(φ ∧ ψ) =Df ¬φ∨∨∨ ¬ψ ¬(φ∨∨∨ ψ) =Df ¬φ ∧ ¬ψ
¬(∀x)φ(x) =Df (∃∃∃x)¬φ(x) ¬(∃∃∃x)φ(x) =Df (∀x)¬φ(x)

¬¬φ =Df φ

All the rules of classical logic are then derivable.
One sometimes sees it suggested that what makes intuitionistic logic different

from classical logic is that it has a stronger interpretation of the existential
quantifier: the first strategy we have considered seems to bear out this view. But
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the second strategy makes it seem equally plausible that the point of difference
lies in the interpretation of negation. This suggests strongly that in fact what
is distinctive of intuitionism is not either of the constants on its own, but the
adoption of both of them together. Indeed until we have them both there
is simply no way within arithmetic to say whether it is the classical or the
intuitionistic constant that we are dealing with.

5 Intuitionistic arithmetic
It is not extending the logic that makes the difference, though: by adding these
constants we do not extend PA. What makes the intuitionistic system stronger
than the classical one is that once the new logical constants have been added the
intuitionist accepts as axioms of HA all the instances of induction formulable
in the new language.

Now there is a natural tendency for the classicist to suppose that he under-
stands these intuitionistic constants perfectly well. It is, after all, a familiar fact
that although classical mathematicians do not require constructive existence
proofs, they generally prefer them. And there would be nothing to stop classi-
cal mathematicians introducing a constructive existential quantifier to indicate
when there is a construction of the object in question rather than a mere proof
of its existence.

But the sort of constructive quantifiers that classical mathematicians have
in mind are not what the intuitionist intends at all. The reason is that if
the intuitionist existential quantifier is understood as subject to the rules of
classical logic then it collapses into the classical quantifier. For otherwise there
would have to be a predicate φ(x) such that both (∃x)φ(x) and ¬(∃∃∃x)φ(x). But
intuitionistically these imply ¬(∀x)¬φ(x) and ¬¬(∀x)¬φ(x) respectively, and
are therefore in direct contradiction to one another.

So someone who is a realist across the board — who believes, in other words,
that classical logic applies to all discourse whatever — cannot understand the
intuitionist existential quantifier as anything distinct from the classical one. It
is, however, somewhat unusual to find anyone who is realist about everything:
very few people are inclined towards realism about fiction, for example. A more
modest realist will think that it is particular features of arithmetic that justify
the application of classical logic to it. This more moderate realist might end
up agreeing with the intuitionist that the rule of double negation elimination is
not justified in the case of sentences involving the new quantifier: the fact that
he had applied a realist logic within arithmetic up to this point would not in
itself tell against such a position, since that would not automatically determine
it that the realist logic is correct in the new context.

6 Dummett’s dilemma
What we have arrived at, then, are two distinct conceptions on each of which —
in contrast to the standard view — intuitionistic arithmetic differs from classical
arithmetic not by having a weaker logic but by having a richer language in which
to express instances of the induction schema. At this point, though, it is worth
recalling the analogy we drew earlier with the distinction between Euclidean and
hyperbolic geometry. As is well known, hyperbolic geometry can be interpreted
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in Euclidean geometry in various ways: in one model the hyperbolic plane is
interpreted as the open unit disk and hyperbolic lines as circular arcs cutting
the unit circle at right angles; in another the hyperbolic plane is once more
interpreted as the open unit disk, but hyperbolic lines are interpreted as line
segments joining points on the unit circle. When the Euclidean geometer views
hyperbolic geometry through the lens of either of these interpretations, it seems
as if the hyperbolic plane is merely a small part of the Euclidean one. But the
existence of such model does not tempt us to think that when the hyperbolic
geometer talks of straight lines he really means circular arcs (or line segments).
This fat seems at first to lend support to the standard view since by analogy it
suggests that we should not think of the interpretation of classical arithmetic
in intuitionistic arithmetic as any more than a model.

But the reason why opposition to the standard view is so natural in geom-
etry is precisely that the words involved do not obtain their meanings solely
from their roles in the geometrical theories in question. We understand what
a triangle is. It is this that gives the question whether the angles of a triangle
always sum to two right angles a meaning, not the purely geometrical role of
the word ‘triangle’. The exponent of the standard view in logic must argue cor-
respondingly that the logical constants used in arithmetic do not obtain their
meaning from their role in arithmetical discourse alone.

The difficulty with this, though, is to see where else they could obtain their
meaning from. It seems highly dubious to say that anything could determine
the validity of the rule of double negation elimination in the same way that
the nature of space is determined. Dummett is clear that it is not an empirical
matter how things are in logical space. But to say, as Dummett does repeatedly,
that the answer is to be sought in considerations in the theory of meaning
scarcely seems to help, because if purely arithmetical practice does not suffice
to determine the matter it is hard to see what other practice might.

Arithmetic is not, after all, actually applied within the rest of language at a
level of generality that might make the difference apparent. Classical and intu-
itionistic arithmetic coincide not only in the equations they can prove but in the
universal generalizations (∀x)f(x) = 0, existential generalizations (∃x)f(x) = 0
and ∀∃-formulae (∀x)(∃y)f(x, y) = 0. Among these are all the number-theoretic
sentences one might ever conceivably apply in reasoning about the world. (Gold-
bach’s conjecture and Fermat’s last theorem are both of the first type, for in-
stance.)

So the only way the partial intuitionist and the classicist could manifest
a difference in their understanding would be by something like a hypothetical
conditional. The existential intuitionist would take (∃x)φ(x) to indicate that if
he were to determine the truth values of φ(0), φ(1), etc. he would eventually find
an n such that φ(n); the negative intuitionist interprets the classicist’s (∃x)φ(x)
as ¬(∀x)¬φ(x), from which this conditional does not follow intuitionistically.
But this is to suppose that we have a secure understanding of the meaning of
a hypothetical conditional whose antecedent involves an infinite task which we
have no method for carrying out. It seems question-begging in the extreme to
suppose such an understanding in advance of an account of quantification over
the natural numbers.
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7 Intuitionism and publicity
How does this leave Dummett’s anti-classical argument? That was intended
to suggest that the meanings the logical constants would need to have if the
classical laws were to be justified are not ones they could possibly have acquired
through our communal use of them. What I am arguing here, on the other hand,
is that it is possible to acquire logical constants which do obey the classical laws
by means that the intuitionist accepts. So either intuitionism sinks with classical
arithmetic or both float together. If classical arithmetic fails the publicity test
then intuitionistic negation and the intuitionistic existential quantifier do too.

It is notoriously difficult to be precise about the constraint that the publicity
requirement places on our theory of meaning, and without doing that it is
perhaps pointless to try to arbitrate this dilemma conclusively. I shall end,
however, by indicating briefly what it is about the intuitionistic constants that
might contravene Dummett’s own strictures.

Negation first. My suggestion is that the meaning of intuitionistic nega-
tion cannot be manifested in the manner Dummett requires. The reason is
that by claiming to understand negation the intuitionist quantifies over, and
therefore on his own principles lays claim to a conception of, the totality of all
(canonical) proofs of arithmetical sentences, but any explanation of our grasp
of this totality seems inevitably to involve a conditional whose unreality makes
its meaning as opaque as any appealed to by the realist. For the intuitionist,
let us recall, explains ¬¬¬φ as meaning that there is a method which converts
any proof of φ into a proof of the explicit contradiction 0 = 1. The difficulty
with this explanation for the finitist is that it generalizes over proofs. Since the
finitist understands universal generalization over natural numbers, he certainly
understands generalization over any recursively enumerable set of strings. He
can therefore understand generalization over the proofs of a formal theory, since
they are recursively enumerable as the range of some primitive recursive func-
tion. Thus if T is a formal theory, we may consider a connective ¬¬¬T explained
so that ¬¬¬Tφ means that there is a method for converting any proof of φ in T
into a proof that 0 = 1 in T .

But if this is not to be impredicative, the theory T cannot involve implica-
tion. If, for instance, T0 is PRA, we obtain a connective ¬¬¬0 explained so that
¬¬¬0φ means that any proof of φ in PRA is convertible into a proof that 0 = 1.
But we can then extend PRA by adding to it all the instances of induction
involving the new connective ¬¬¬0 to obtain a larger theory T1. We can then
introduce a connective ¬¬¬1 defined in terms of T1. This leads us to a theory T2
containing all the instances of induction involving ¬¬¬1. And so on.

So far, of course, this iterative procedure is finitistically legitimate, even if
it is iterated into the transfinite. In general, we define Tα+1 to be Tα with all
instances of induction involving ¬¬¬α added; and Tλ to be the union of the Tα
for α < λ whenever λ is a limit ordinal. But eventually (when α = ωω) the
procedure of explaining ¬¬¬α is one that the finitist cannot understand (because
he can make no finitistic sense of the ordinal involved).

The best the finitist can do, therefore, is to form a hierarchy of implication
connectives. The intuitionist, on the other hand, claims to understand the
original explanation once and for all as a generalization over all proofs whatever,
not those restricted to some particular formal theory. It is the intuitionist’s claim
to be able to understand this generalization that gives the negative fragment of
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intuitionistic arithmetic its power to emulate classical arithmetic.
Similar remarks apply to the intuitionistic existential quantifier. The in-

tuitionist interprets (∃∃∃x)φ(x) as meaning that there is a method for finding a
number of which φ holds. The difficulty with understanding this comes when we
try to say what is to count as an intuitionistically acceptable method. Suppose
that the method for finding the number is encoded in an algorithm. In order
for it to be of any use to use we need a proof that this algorithm will termi-
nate. But this problem is of just the same order of complexity as the problem
of proving arithmetical theorems on which our understanding of intuitionistic
negation hinged. For any formal theory T we can of course define a quantifier
∃∃∃T in such a way that (∃∃∃Tx)φ(x) means there is an algorithm for producing a
number satisfying φ which can be proved in T to terminate. But the general
notion is as resistant to non-circular explanation as negation was.

8 Conclusion
My aim has been to sketch a dilemma for Dummett. If he draws the constraints
on what is to constitute manifestation of the meaning of a logical constant too
narrowly, his position will collapse into finitism, with disastrous consequences
for arithmetic as generally understood. If he draws them more generously,
however, so as to make our grasp of intuitionistic negation or the intuitionistic
existential quantifier plausible, he renders legitimate the practice of the negative
intuitionist and the existential intuitionist respectively. But his challenge in
that case is to specify — without appeal to hypothetical conditionals referring
in the antecedent to infinite tasks — what is the manifestable difference between
their practice and that of the classicist his argument was originally intended to
criticize.
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