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1. Sketch a proof that any axiomatisable extension of (first order) ZFC is 
incomplete if it is consistent. 
 

2. Consider the following recursive definition of a truth predicate for the 
language of basic arithmetic: 
 

Atomic A is true iff A is provable in PA 
A∧B is true iff A is true and B is true 
¬A is true iff A is not true 
∀xA is true iff, for each numeral n, A[x/n] is true 

 
Given that every recursive predicate can be captured in PA, is this a 
basis for a proof that PA captures its own truth predicate? 
 

3. Assuming that PA is ω-consistent, show how to construct a formula G 
such that PA+G is consistent but ω-inconsistent. 
 

4. Show that a first-order theory either has only finite models or is not 
categorical. Show that there is a categorical second-order theory. What, 
if anything, is the philosophical significance of these facts? 

 
5. Prove the compactness theorem for first-order logic with identity. Use it 

to show that the set of all first-order arithmetical truths has non-
isomorphic models.  

 
6. Is there any way to rescue Hilbert’s Programme from the problems 

arising from the incompleteness theorems? 
 

7. Prove in ZFC that if |A|≤|B| and |B|≤|A| then |A|=|B|. 
	
  

8. Define cardinal addition, multiplication and exponentiation. Show the 
following, where A, B and C are disjoint sets: 

 
(i) |𝐴|𝟎 = 𝟏	
  
(ii) |𝐴|𝟏 = |𝐴|	
  
(iii) |𝐴||𝐵|×|𝐴||𝐶| = |𝐴| 𝐵 !|𝐶|	
  
(iv) (|𝐴||𝐵|)|𝐶| = |𝐴||𝐵|×|𝐶|	
  
(v) |A|<|℘A|	
  and	
  |℘A|=	
  2|A|	
  

	
  
9. Are there good reasons to believe or disbelieve the axiom of choice? 

 
10. Does the Löwenheim-Skolem theorem imply that we can do without 

postulating uncountable sets? 
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