Part IB Logic Class 2: Metatheory of propositional calculus II Prof Michael Potter 3pm Tuesday 4th February 2014 Mill Lane Room 10

Do not hand in your solutions in advance: write them out and bring them with you to the class. For explanations of the terminology used, consult the Metatheory lecture notes at http://people.ds.cam.ac.uk/tecb2/teaching.shtml.

Soundness

Read chapter 5 of Metatheory.

- 1. Show that the following are rule-sound:
 - $\begin{array}{ll} (a) & \lor I \\ (b) & \bot E \\ (c) & \rightarrow I \end{array}$
 - $(d) \rightarrow E$
- 2. Describe a way of enumerating the sentences of TFL, i.e. constructing an infinite list in which each sentence occurs once.

Completeness

Read chapter 6 of Metatheory.

- 3. Prove the following without using the completeness theorem.
 - (a) If $\Gamma \vdash \mathcal{C}$ then $\Gamma \vdash \neg \neg \mathcal{C}$
 - (b) If $\Gamma \vdash C$ and $\Gamma \vdash D$, then $\Gamma \vdash C \land D$
 - (c) If $\Gamma \vdash \neg \mathcal{C}$ or $\Gamma \vdash \neg \mathcal{D}$, then $\Gamma \vdash \neg (\mathcal{C} \land \mathcal{D})$
 - (d) If $\Gamma \vdash \neg \mathcal{C}$ and $\Gamma \vdash \neg \mathcal{D}$, then $\Gamma \vdash \neg (\mathcal{C} \lor \mathcal{D})$.
 - (e) If $\Gamma \vdash \mathcal{A}$ and $\Gamma, \mathcal{A} \vdash \bot$, then $\Gamma \vdash \bot$
 - (f) If $\Gamma \vdash \neg \mathcal{A}$ then $\Gamma, \mathcal{A} \vdash \bot$
 - (g) If Γ , $\neg \mathcal{A} \vdash \bot$, then $\Gamma \vdash \mathcal{A}$
- 4. Prove Cases 5 and 6 of Lemma 6.10.
- 5. Show that if $\Gamma \vdash \mathcal{A}$ and $\Gamma, \mathcal{A} \vdash \mathcal{B}$ then $\Gamma \vdash \mathcal{B}$.
- 6. Let us say that Γ is *consistent* if $\Gamma \nvDash \bot$. Show that the following are equivalent:
 - (a) $\mathcal{A}_1, \ldots, \mathcal{A}_n$ are consistent;
 - (b) $\nvdash \neg (\mathcal{A}_1 \land \ldots \land \mathcal{A}_n);$
 - (c) $\nvdash (\mathcal{A}_1 \land \ldots \land \mathcal{A}_{n-1}) \to \neg \mathcal{A}_n.$