Part IB Logic
 Class 2: Metatheory of propositional calculus II
 Prof Michael Potter
 3pm Tuesday 4th February 2014
 Mill Lane Room 10

Do not hand in your solutions in advance: write them out and bring them with you to the class. For explanations of the terminology used, consult the Metatheory lecture notes at http://people.ds.cam.ac.uk/tecb2/teaching.shtml.

Soundness

Read chapter 5 of Metatheory.

1. Show that the following are rule-sound:
(a) $\vee I$
(b) $\perp \mathrm{E}$
(c) $\rightarrow \mathrm{I}$
(d) $\rightarrow \mathrm{E}$
2. Describe a way of enumerating the sentences of TFL, i.e. constructing an infinite list in which each sentence occurs once.

Completeness

Read chapter 6 of Metatheory.
3. Prove the following without using the completeness theorem.
(a) If $\Gamma \vdash \mathcal{C}$ then $\Gamma \vdash \neg \neg \mathcal{C}$
(b) If $\Gamma \vdash \mathcal{C}$ and $\Gamma \vdash \mathcal{D}$, then $\Gamma \vdash \mathcal{C} \wedge \mathcal{D}$
(c) If $\Gamma \vdash \neg \mathcal{C}$ or $\Gamma \vdash \neg \mathcal{D}$, then $\Gamma \vdash \neg(\mathcal{C} \wedge \mathcal{D})$
(d) If $\Gamma \vdash \neg \mathcal{C}$ and $\Gamma \vdash \neg \mathcal{D}$, then $\Gamma \vdash \neg(\mathcal{C} \vee \mathcal{D})$.
(e) If $\Gamma \vdash \mathcal{A}$ and Γ, $\mathcal{A} \vdash \perp$, then $\Gamma \vdash \perp$
(f) If $\Gamma \vdash \neg \mathcal{A}$ then $\Gamma, \mathcal{A} \vdash \perp$
(g) If $\Gamma, \neg \mathcal{A} \vdash \perp$, then $\Gamma \vdash \mathcal{A}$
4. Prove Cases 5 and 6 of Lemma 6.10.
5. Show that if $\Gamma \vdash \mathcal{A}$ and $\Gamma, \mathcal{A} \vdash \mathcal{B}$ then $\Gamma \vdash \mathcal{B}$.
6. Let us say that Γ is consistent if $\Gamma \nvdash \perp$. Show that the following are equivalent:
(a) $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ are consistent;
(b) $\nvdash \neg\left(\mathcal{A}_{1} \wedge \ldots \wedge \mathcal{A}_{n}\right)$;
(c) $\nvdash\left(\mathcal{A}_{1} \wedge \ldots \wedge \mathcal{A}_{n-1}\right) \rightarrow \neg \mathcal{A}_{n}$.

